Skip to main content

Achievements and Challenges in Recognizing and Reconstructing Civil Infrastructure

  • Conference paper
Outdoor and Large-Scale Real-World Scene Analysis

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7474))

Abstract

The US National Academy of Engineering recently identified restoring and improving urban infrastructure as one of the grand challenges of engineering. Part of this challenge stems from the lack of viable methods to map/label existing infrastructure. For computer vision, this challenge becomes “How can we automate the process of extracting geometric, object oriented models of infrastructure from visual data?” Object recognition and reconstruction methods have been successfully devised and/or adapted to answer this question for small or linear objects (e.g. columns). However, many infrastructure objects are large and/or planar without significant and distinctive features, such as walls, floor slabs, and bridge decks. How can we recognize and reconstruct them in a 3D model? In this paper, strategies for infrastructure object recognition and reconstruction are presented, to set the stage for posing the question above and discuss future research in featureless, large/planar object recognition and modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Academy of Engineering, http://www.engineeringchallenges.org/Object.File/Master/11/574/Grand%20Challenges%20final%20book.pdf

  2. Jaselskis, E.J., Gao, Z., Walters, R.C.: Improving transportation projects using laser scanning. Journal of Construction Engineering & Management 131(3), 377–384 (2005)

    Article  Google Scholar 

  3. Brilakis, I., German, S., Zhu, Z.: Visual Pattern Recognition Models for Remote Sensing of Civil Infrastructure. Journal of Computing in Civil Engineering 25(5) (2011) (in press)

    Google Scholar 

  4. Reddington, J.: Leica Geosystems HDS Plant Seminar, http://www.wipco.co.kr/2005_Data/Korea%20plant%20oct05.pdf

  5. Sanders, F.H.: 3D Laser Scanning Helps Chevron Revamp Platform. Oil & Gas Journal 99(18), 92–98 (2001)

    Google Scholar 

  6. Census Bureau, http://www.census.gov/const/C30/release.pdf

  7. Eastman, C., Teicholz, P., Sacks, R., Liston, K.: BIM Handbook: A Guide to Building Information Modeling. Wiley, New Jersey (2008)

    Google Scholar 

  8. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Nistér, D.: Automatic Passive Recovery of 3D from Images and Video. In: 2nd International Symposium on 3D Data Processing, Visualization & Transmission, pp. 438–445. IEEE Press, Washington (2004)

    Chapter  Google Scholar 

  10. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the World from Internet Photo Collections. International Journal of Computer Vision 80(2), 189–210 (2008)

    Article  Google Scholar 

  11. Pollefeys, M., Nister, D., Frahm, J., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S., Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewenius, R., Welch, G., Towles, H.: Detailed Real-time Urban 3d Reconstruction from Video. International Journal of Computer Vision 78(23), 143–167 (2008)

    Article  Google Scholar 

  12. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Reconstructing Building Interiors from Images. In: 12th International Conference on Computer Vision, pp. 80–87. IEEE Press, Kyoto (2009)

    Chapter  Google Scholar 

  13. Golparvar-Fard, M., Savarese, S., Peña-Mora, F.: Interactive Visual Construction Progress Monitoring with 4D Augmented Reality Model. In: Construction Research Congress, Seattle, pp. 41–50 (2009)

    Google Scholar 

  14. Agarwal, S., Furukawa, Y., Snavely, N., Curless, B., Seitz, S., Szeliski, R.: Reconstructing Rome. IEEE Computer 43(6), 40–47 (2010)

    Article  Google Scholar 

  15. Gallup, D., Frahm, J., Pollefeys, M.: Piecewise Planar and Non-planar Stereo for Urban Scene Reconstruction. In: 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, pp. 1418–1425 (2010)

    Google Scholar 

  16. Bosché, F., Haas, C.T.: Automated Retrieval of 3D CAD Model Objects in Construction Range Images. Automation in Construction 17(4), 499–512 (2008)

    Article  Google Scholar 

  17. Pu, S., George, V.: Knowledge Based Reconstruction of Building Models from Terrestrial Laser Scanning Data. International Journal of Photogrammetry and Remote Sensing 64(6), 575–584 (2009)

    Article  Google Scholar 

  18. Tang, P., Huber, D., Akinci, B., Lipman, R., Lytle, A.: Automatic Reconstruction of As-built Building Information Models from Laser-scanned Point Clouds: A Review of Related Techniques. Automation in Construction 19(7), 829–843 (2010)

    Article  Google Scholar 

  19. Son, H., Kim, C.: 3d Structural Component Recognition and Modeling Method using Color and 3d Data for Construction Progress Monitoring. Automation in Construction 19(7), 844–854 (2010)

    Article  Google Scholar 

  20. Xiong, X., Huber, D.: Using Context to Create Semantic 3D Models of Indoor Environments. In: British Machine Vision Conference, Aberystwyth, pp. 45.1–45.11 (2010)

    Google Scholar 

  21. Huber, D., Akinci, B., Adan, O.A., Anil, E., Okorn, B.E., Xiong, X.: Methods for Automatically Modeling and Representing As-built Building Information Models. In: NSF Engineering Research and Innovation Conference, Atlanta (2011)

    Google Scholar 

  22. Adan, O.A., Xiong, X., Akinci, B., Huber, D.: Automatic Creation of Semantically Rich 3D Building Models from Laser Scanner Data. In: Proceedings of the International Symposium on Automation and Robotics in Construction (2011)

    Google Scholar 

  23. Valero, E.R., Adan, O.A., Huber, D., Cerrada, C.: Detection, Modeling, and Classification of Moldings for Automated Reverse Engineering of Buildings from 3D Data. In: 28th International Symposium on Automation and Robotics in Construction (2011)

    Google Scholar 

  24. VECO Project Technologies, http://www.ch2m.com/corporate/markets/energy/veco.asp

  25. Reality Measurements Inc., http://www.realitymeasurements.com

  26. Zhu, Z., Brilakis, I.: Comparison of Civil Infrastructure Optical-based Spatial Data Acquisition Techniques. Journal of Computing in Civil Engineering 23(3), 170–177 (2009)

    Article  Google Scholar 

  27. Azhar, S., Hein, M., Sketo, B.: Building information modeling: Benefits, risks and challenges. In: 44th Associated Schools of Construction National Conference, Auburn (2008)

    Google Scholar 

  28. Nüchter, A., Surmann, H., Lingemann, K., Hertzberg, J.: Semantic scene analysis of scanned 3d indoor environments. In: Eighth International Fall Workshop on Vision, Modeling and Visualization, pp. 215–221 (2003)

    Google Scholar 

  29. Pu, S., George, V.: Knowledge based reconstruction of building models from terrestrial laser scanning data. International Journal of Photogrammetry and Remote Sensing 64(6), 575–584 (2009)

    Article  Google Scholar 

  30. Pu, S.: Automatic building modeling from terrestrial laser scanning. In: Oosterom, P., Zlatanova, S., Penninga, F., Fendel, E.M., Cartwright, W., Gartner, G., Meng, L., Peterson, M.P. (eds.) Advances in 3d Geoinformation Systems, Part II, Theme II. LNGC, pp. 141–160. Springer, Heidelberg (2008)

    Google Scholar 

  31. Shin, S., Hryciw, R.D.: Wavelet Analysis of Soil Mass Images for Particle Size Determination. Journal of Computing in Civil Engineering 18(1), 19–27 (2004)

    Article  Google Scholar 

  32. Masad, E., Al-Rousan, T., Button, J., Little, D., Tutumluer, E.: Test Methods for Characterizing Aggregate Shape, Texture, and Angularity. National Cooperative Highway Research Program (NCHRP), Report 555 (2007)

    Google Scholar 

  33. Pan, T., Tutumluer, E.: Imaging based evaluation of coarse aggregate size and shape properties affecting pavement performance. In: Proceedings of Geo-Frontiers Congress, Austin (2005)

    Google Scholar 

  34. Lee, S., Chang, L.M., Chen, P.H.: Performance comparison of bridge coating defect recognition method. Corrosion 61(1), 12–20 (2005)

    Article  Google Scholar 

  35. Jeong, H., Abraham, D.M.: A decision tool for the selection of imaging technologies to detect underground infrastructure. Tunneling and Underground Space Technology 19(2), 175–191 (2003)

    Article  Google Scholar 

  36. Hutchinson, T.C., Chen, Z.: Improved image analysis for evaluating concrete damage. Journal of Computing in Civil Engineering 20(3), 210–216 (2006)

    Article  Google Scholar 

  37. Lester, J., Bernold, L.E.: Innovation to characterize buried utilities using Ground Penetrating Radar. Automation in Construction 16(4), 546–555 (2007)

    Article  Google Scholar 

  38. Chen, Z.W., Xu, Y.L., Li, Q., Wu, D.J.: Dynamic Stress Analysis of Long Suspension Bridges under Wind, Railway, and Highway Loadings. Journal of Bridge Engineering 16, 383–392 (2008)

    Article  Google Scholar 

  39. Chae, M.J., Iseley, T., Abraham, D.M.: Computerized sewer pipe condition assessment. In: International Conference on Pipeline Engineering and Construction, pp. 477–493. ASCE, Baltimore (2003)

    Google Scholar 

  40. Costello, S.B., Chapman, D.N., Rogers, C.D.F., Metje, N.: Underground asset location and condition assessment technologies. Tunneling and Underground Space Technology 22(5-6), 524–542 (2007)

    Article  Google Scholar 

  41. Sinha, S.K., Fieguth, P.W.: Automated detection of Cracks in Buried Concrete Pipe Images. Automation in Construction 15(1), 58–72 (2006)

    Article  Google Scholar 

  42. Yang, M.D., Su, T.C.: Segmenting ideal morphologies of sewer pipe defects on CCTV images for automated diagnosis. Expert Systems with Applications 36(2), 3562–3573 (2009)

    Article  MathSciNet  Google Scholar 

  43. Guo, W., Soibelman, L., Garrett, J.H.: Automated defect detection for sewer pipeline inspection and condition assessment. Automation in Construction 18(5), 587–596 (2009)

    Article  Google Scholar 

  44. Zhu, Z., Brilakis, I.: Detecting Air Pockets for Architectural Concrete Quality Assessment using Visual Sensing. Journal of Information Technology in Construction 13, 86–102 (2008)

    Google Scholar 

  45. Zhu, Z., Brilakis, I.: Machine Vision based Concrete Surface Quality Assessment. Journal of Construction Engineering and Management, ASCE 136(2), 210–218 (2010)

    Article  Google Scholar 

  46. Shih, N.J., Wu, M.C., Kunz, J.: The inspections of as-built construction records by 3D point clouds. Center for Integrated Facility Engineering, Working Paper #090, Stanford University (2004)

    Google Scholar 

  47. Akinci, B., Boukamp, F., Gordon, C., Huber, D., Lyons, C., Park, K.: A formalism for utilization of sensor systems and integrated project models for active construction quality control. Automation in Construction 15(2), 124–138 (2006)

    Article  Google Scholar 

  48. Kim, C., Haas, C.T., Liapi, K.A.: Rapid, on-site spatial information acquisition and its use for infrastructure operation and maintenance. Automation in Construction 14, 666–684 (2005)

    Article  Google Scholar 

  49. Kim, C., Son, H., Kim, H., Han, S.H.: Applicability of flash laser distance and ranging to three-dimensional spatial information acquisition and modeling on a construction site. Canadian Journal of Civil Engineering 35, 1331–1341 (2008)

    Article  Google Scholar 

  50. Gong, J., Caldas, C.H.: Data processing for real-time construction site spatial modeling. Automation in Construction 17, 526–535 (2008)

    Article  Google Scholar 

  51. Dai, F., Dong, S., Kamat, V.R., Lu, M.: Photogrammetry assisted measurement of interstory drift for rapid post-disaster building damage reconnaissance. Journal of Nondestructive Evaluation 30(3), 201–212 (2011)

    Article  Google Scholar 

  52. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 519–526. IEEE Press (2006)

    Google Scholar 

  53. Furukawa, Y.: Accurate, dense, and robust multi-view stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  54. Golparvar-Fard, M., Peña-Mora, F., Savarese, S.: D4AR – a 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. Journal of Information Technology in Construction 14, 129–153 (2009)

    Google Scholar 

  55. Golparvar-Fard, M., Peña-Mora, F., Savarese, S.: D4AR – 4 dimensional augmented reality tools for automated remote progress tracking and support of decision-enabling tasks in the AEC/FM industry. In: 6th International Conference on Innovations in AEC (2010)

    Google Scholar 

  56. Ibrahim, Y.M., Lukins, T.C., Zhang, X., Trucco, E., Kaka, A.P.: Towards automated progress assessment of workpackage components in construction projects using computer vision. Advanced Engineering Informatics 23, 93–103 (2009)

    Article  Google Scholar 

  57. Quiñones-Rozo, C.A., Hashash, Y.M.A., Liu, L.Y.: Digital image reasoning for tracking excavation activities. Automation in Construction 17(5), 608–622 (2008)

    Article  Google Scholar 

  58. González-Aguilera, D., Gómez-Lahoz, J.: Dimensional Analysis of Bridges from a Single Image. Journal of Computing in Civil Engineering 23(6), 319–329 (2009)

    Article  Google Scholar 

  59. Dai, F., Lu, M.: Assessing the accuracy of applying photogrammetry to take geometric measurement on building products. Journal of Construction Engineering and Management 135(2), 242–250 (2010)

    Article  Google Scholar 

  60. Chae, S., Kano, N.: Application of location information by stereo camera images to project progress monitoring. In: 24th International Symposium on Automation and Robotics in Construction, Kochi, Kerala, India, pp. 89–92 (2007)

    Google Scholar 

  61. Tomasi, C., Kanade, T.: Detection and tracking of point features. Carnegie Mellon University Technical Report (1991)

    Google Scholar 

  62. Gupta, G., Balasubramanian, R., Rawat, M., Bhargava, R., Krishna, B.: Stereo matching for 3d building reconstruction. Advances in Computing. Communication and Control 125(3), 522–529 (2011)

    Article  Google Scholar 

  63. Zhu, Z., Brilakis, I.: Concrete Column Recognition in Images and Videos. Journal of Computing in Civil Engineering 24(6), 478–487 (2010)

    Article  Google Scholar 

  64. Yamaguchi, T., Hashimoto, S.: Fast crack detection method for large-size concrete surface images using percolation-based image processing. Machine Vision and Applications 11(5), 797–809 (2009)

    Google Scholar 

  65. Zhu, Z., German, S., Brilakis, I.: Visual Retrieval of Concrete Crack Properties for Automated Post-earthquake Structural Safety Evaluation. Automation in Construction 20(7), 874–883 (2011)

    Article  Google Scholar 

  66. Zhu, Z., Brilakis, I.: Surface Defects Detection for Architectural Concrete Quality Assessment using Visual Sensing. Special Issue in Sensors in Construction and Infrastructure Management. Journal of Information Technology in Construction 13, 86–102 (2008)

    Google Scholar 

  67. German, S., Brilakis, I., DesRoches, R.: Automated Detection of Exposed Reinforcement in Post-Earthquake Safety and Structural Evaluations. In: The 6th International Structural Engineering and Construction Conference (2011)

    Google Scholar 

  68. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision 43, 29–44 (2001)

    Article  MATH  Google Scholar 

  69. Schmid, C.: Constructing models for content-based image retrieval. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 39–45 (2001)

    Google Scholar 

  70. Koch, C., Brilakis, I.: Pothole Detection in Asphalt Pavement Images. Advanced Engineering Informatics 25(3), 507–515 (2011)

    Article  Google Scholar 

  71. Bouguet, J.Y.: Camera calibration toolbox for Matlab, Intel Corporation, http://www.vision.caltech.edu/bouguetj/calib_doc/

  72. Fathi, H., Brilakis, I.: Automated sparse 3D point cloud generation of infrastructure using its distinctive visual features. Advance Engineering Informatics 25(4), 760–770 (2011)

    Article  Google Scholar 

  73. Rashidi, A., Dai, F., Brilakis, I., Vela, P.: Comparison of camera motion estimation methods for 3D reconstruction of infrastructure. In: 2011 ASCE International Workshop on Computing in Civil Engineering (2011)

    Google Scholar 

  74. Zhu, Z., Brilakis, I.: Concrete Column Recognition in Images and Videos. Journal of Computing in Civil Engineering 24(6), 478–487 (2010)

    Article  Google Scholar 

  75. Savarese, S., Fei-Fei, L.: 3D generic object categorization, localization and pose estimation. In: IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE Press, Brazil (2007)

    Chapter  Google Scholar 

  76. Savarese, S., Fei-Fei, L.: View Synthesis for Recognizing Unseen Poses of Object Classes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 602–615. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  77. Ozuysal, M., Lepetit, V., Fua, P.: Pose estimation for category specific multiview object localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 778–785. IEEE Press, Miami (2009)

    Chapter  Google Scholar 

  78. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 264–271 (2003)

    Google Scholar 

  79. Leibe, B., Schiele, B.: Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 145–153. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  80. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 524–531. IEEE Press (2005)

    Google Scholar 

  81. Felzenszwalb, P., Huttenlocher, D.: Efficient matching of pictorial structures. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 66–73. IEEE Press, South Carolina (2000)

    Google Scholar 

  82. Felzenszwalb, P., McAllester, D., Ramaman, D.: A Discriminatively Trained, Multiscale, Deformable Part Model. In: 26th IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  83. Torralba, A., Murphy, K., Freeman, W.: Sharing features: efficient boosting procedures for multiclass object detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 762–769 (2004)

    Google Scholar 

  84. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification with sets of image features. In: 10th IEEE International Conference on Computer Vision, Beijing, vol. 2, pp. 1458–1465 (2005)

    Google Scholar 

  85. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106, 59–70 (2007)

    Article  Google Scholar 

  86. Schneidermanand, H., Kanade, T.: A statistical approach to 3D object detection applied to faces and cars. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 746–751 (2000)

    Google Scholar 

  87. Weber, M., Welling, M., Perona, P.: Unsupervised Learning of Models for Recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18–32. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  88. Li, S.Z., Zhang, Z.: FloatBoost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)

    Article  Google Scholar 

  89. Brown, M., Lowe, D.G.: Unsupervised 3D Object Recognition and Reconstruction in Unordered Datasets. In: 5th International Conference on 3-D Digital Imaging and Modeling, pp. 56–63. IEEE Press, Piscataway (2005)

    Chapter  Google Scholar 

  90. Ferrari, V., Tuytelaars, T., Van Gool, L.: Simultaneous object recognition and segmentation from single or multiple model views. International Journal of Computer Vision 67(2), 159–188 (2006)

    Article  Google Scholar 

  91. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. International Journal of Computer Vision 66(3), 231–259 (2006)

    Article  Google Scholar 

  92. Lowe, D.G.: Local feature view clustering for 3d object recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. I-682 – I-688. IEEE Press (2001)

    Google Scholar 

  93. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, vol. 1, pp. 384–393 (2002)

    Google Scholar 

  94. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. International Journal of Computer Vision, 128–142 (2002)

    Google Scholar 

  95. Yan, P., Khan, D., Shah, M.: 3d model based object class detection in an arbitrary view. In: IEEE 11th International Conference on Computer Vision, pp. 1–6. IEEE Press, Rio de Janeiro (2007)

    Google Scholar 

  96. Thomas, A., Ferrar, V., Leibe, B., Tuytelaars, T., Schiel, B., Van Gool, L.: Towards multi-view object class detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1589–1596 (2006)

    Google Scholar 

  97. Liebelt, J., Schmid, C., Schertler, K.: Viewpoint-independent object class detection using 3d feature maps. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE Press, Anchorage (2008)

    Chapter  Google Scholar 

  98. Kushal, A., Schmid, C., Ponce, J.: Flexible object models for category-level 3d object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE Press, Minneapolis (2007)

    Chapter  Google Scholar 

  99. Hoiem, D., Rother, C., Winn, J.: 3d layoutCRF for multi-view object class recognition and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE Press, Minneapolis (2007)

    Chapter  Google Scholar 

  100. Chiu, H., Kaelbling, L., Lozano-Perez, T.: Virtual training for multi-view object class recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE Press, Minneapolis (2007)

    Chapter  Google Scholar 

  101. Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: classification, annotation and segmentation in an automatic framework. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2036–2043. IEEE Press, Miami (2009)

    Google Scholar 

  102. Su, H., Sun, M., Fei-Fei, L., Savarese, S.: Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In: 12th International Conference on Computer Vision, pp. 213–220. IEEE Press, Kyoto (2009)

    Chapter  Google Scholar 

  103. Sun, M., Su, H., Savarese, S., Fei-Fei, L.: A multi-view probabilistic model for 3d object classes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1247–1254. IEEE Press, Miami (2009)

    Chapter  Google Scholar 

  104. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  105. Harris, C., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  106. Tomasi, C., Kanade, T.: Detection and tracking of point features (1991)

    Google Scholar 

  107. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  MATH  Google Scholar 

  108. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004)

    Article  Google Scholar 

  109. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a Day. In: IEEE International Conference on Computer Vision, pp. 72–79. IEEE Press, Kyoto (2009)

    Chapter  Google Scholar 

  110. Bok, Y., Choi, D., Jeong, Y., Kweon, I.S.: Capturing Village-Level Heritages with a Hand-Held Camera-Laser Fusion Sensor. In: 12th International Conference on Computer Vision Workshops (eHeritage and Digital Art Preservation), pp. 947–954. IEEE Press, Kyoto (2009)

    Google Scholar 

  111. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital michelangelo project: 3D scanning of large statues. In: 27th Annual Conference on Computer Graphics and Iterative Tehniques, pp. 131–144 (2000)

    Google Scholar 

  112. Bernardini, F., Martin, I.M., Rushmeier, H.: High-quality texture reconstruction from multiple scans. IEEE Transactions of Visualization and Computer Graphics 7(4), 318–332 (2001)

    Article  Google Scholar 

  113. Shum, H.Y., Han, M., Szeliski, R.: Interactive construction of 3d models from panoramic mosaics. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 427–433. IEEE Press, Santa Barbara (1998)

    Google Scholar 

  114. Pollefeys, M., Van Gool, L.: From images to 3d models. Communications of the ACM 45(7), 50–55 (2002)

    Article  Google Scholar 

  115. Dick, A.R., Torr, P.H.S., Cipolla, R.: Modeling and interpretation of architecture from several images. International Journal of Computer Vision 60(2), 111–134 (2004)

    Article  Google Scholar 

  116. Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa, M., Master, N.: Calibrated registered images of an extended urban area. International Journal of Computer Vision 53(1), 93–107 (2003)

    Article  Google Scholar 

  117. Stamos, I., Allen, P.K.: Geometry and texture recovery of scene of large scale. Journal of Computer Vision and Image Understanding 88(2), 94–118 (2002)

    Article  Google Scholar 

  118. Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., Dellaert, F.: Detecting and matching re-peated patterns for automatic geo-tagging in urban environments. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7. IEEE Press, Anchorage (2008)

    Google Scholar 

  119. Seitz, S., Dyer, C.: Photorealistic scene reconstruction by voxel coloring. International Journal of Computer Vision 35(2), 151–173 (1999)

    Article  Google Scholar 

  120. Lindeberg, T.: Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied Statistics 21(2), 224–270 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brilakis, I., Dai, F., Radopoulou, SC. (2012). Achievements and Challenges in Recognizing and Reconstructing Civil Infrastructure. In: Dellaert, F., Frahm, JM., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds) Outdoor and Large-Scale Real-World Scene Analysis. Lecture Notes in Computer Science, vol 7474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34091-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34091-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34090-1

  • Online ISBN: 978-3-642-34091-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics