Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 644 Accesses

Abstract

Fundamentals of GaAs-based laser designs and the investigated (In)(Ga)As gain media concepts are discussed within this chapter. (Al)GaAs is the material system which is primarily employed for the infrared spectral range. Due to its versatility and ability to form dielectric mirrors for vertically emitting devices, (Al)GaAs forms the basis for a wide range of applications in the near infrared spectrum, and is well-established for industrial mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Hirayama, K. Matsunaga, M. Asada, Y. Suematsu, Lasing action of Ga0.67In0.33As/GaInAsP/InP tensile-strained quantum-box laser. Electron. Lett. 30(2), 142 (1994). ISSN 00135194

    Google Scholar 

  2. I.N. Stranski, L. Krastanow, Zur theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Monatshefte für Chemie/Chem. Mon. 71, 351 (1938). ISSN 0026-9247

    Google Scholar 

  3. N.N. Ledentsov, V.M. Ustinov, A.Y. Egorov, M.V. Zhukov, A.E. Maximov, I.G. Tabatadze, P.S. Kop’ev, Optical properties of heterostructures with InGaAs-GaAs quantum clusters. Fiz. i Tekh. Poluprovodn. 28, 1484 (1994)

    Google Scholar 

  4. N. Kirstaedter, N. Ledentsov, M. Grundmann, V. Bimberg, D. Ustinov, S. Ruvimov, M. Maximov, P. Kop’ev, Z. Alferov, U. Richter, P. Werner, U. Gösele, J. Heydenreich, Low threshold, large \(T_0\) injection laser emission from (InGa)As quantumdots. El. Lett. 30(17), 1416 (1994)

    Google Scholar 

  5. L.F. Lester, A. Stintz, H. Li, T.C. Newell, E.A. Pease, B.A. Fuchs, K.J. Malloy, Optical characteristics of 1.24 \(\mu \) m InAs quantum-dot laser diodes. IEEE Photonics Technol. Lett. 11(8), 931 (1999). ISSN 1041-1135

    Google Scholar 

  6. G. Park, O. Shchekin, D. Huffaker, D. Deppe, Low-threshold oxide-confined 1.3-\(\mu \)m quantum-dot laser. IEEE Photonics Technol. Lett. 12(3), 230 (2000). ISSN 10411135

    Google Scholar 

  7. I. Kaiander, MOCVD growth of InGaAs/GaAs QDs for long wavelength lasers and VCSELs, Dissertation, Technische Universität Berlin, 2006

    Google Scholar 

  8. F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A.O. Kosogov, P. Werner, Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 71(1), 22 (1997)

    Google Scholar 

  9. I.N. Kaiander, R.L. Sellin, T. Kettler, N.N. Ledentsov, D. Bimberg, N.D. Zakharov, P. Werner, 1.24 \(\mu \)m InGaAs/GaAs quantum dot laser grown by metalorganic chemical vapor deposition using tertiarybutylarsine. Appl. Phys. Lett. 84(16), 2992 (2004). ISSN 00036951

    Google Scholar 

  10. A. Strittmatter, T.D. Germann, T. Kettler, K. Posilovic, U.W. Pohl, D. Bimberg, Alternative precursor metal-organic chemical vapor deposition of InGaAs/GaAs quantum dot laser diodes with ultralow threshold at 1.25\(\mu \)m. Appl. Phys. Lett. 88(26), 262104 (2006)

    Google Scholar 

  11. D. Bimberg, F. Heinrichsdorff, R.K. Bauer, D. Gerthsen, D. Stenkamp, D.E. Mars, J.N. Miller, Binary AlAs/GaAs versus ternary GaAlAs/GaAs interfaces: a dramatic difference of perfection. J. Vac. Sci. Technol. B 10(4), 1793 (1992)

    Google Scholar 

  12. T. Makino, Analytical formulas for the optical gain of quantum wells. IEEE J. Quantum Electron. 32(3), 493 (1996). ISSN 00189197

    Google Scholar 

  13. L. Coldren, S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995)

    Google Scholar 

  14. F. Bachmann, P. Loosen, R. Proprawe, High-Power Diode Lasers Technology and Applications (Springer Science and Business Media, New York, 2007)

    Google Scholar 

  15. M. Asada, Y. Miyamoto, Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron. 22(9), 1915 (1986). ISSN 0018-9197

    Google Scholar 

  16. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1998)

    Google Scholar 

  17. R. Yan, S. Corzine, L. Coldren, I. Suemune, Corrections to the expression for gain in GaAs. IEEE J. Quantum Electron. 26(2), 213 (1990). ISSN 00189197

    Google Scholar 

  18. S.L. Chuang, Physics of Optoelectronic Devices, 2nd edn. (Wiley, New York, 2009). ISBN 978-0-470-29319-5

    Google Scholar 

  19. L.V. Asryan, M. Grundmann, N.N. Ledentsov, O. Stier, R.A. Suris, D. Bimberg, Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser. J. Appl. Phys. 90(3), 1666 (2001). ISSN 00218979

    Google Scholar 

  20. M. Grundmann (ed.), Nano-Optoelectronics (Springer, Berlin, 2002)

    Google Scholar 

  21. D. Bimberg (ed.), Semiconductor Nanostructures (Springer, Berlin, 2008)

    Google Scholar 

  22. V.A. Shchukin, N.N. Ledentsov, P.S. Kop’ev, D. Bimberg, Spontaneous ordering of arrays of coherent strained Islands. Phys. Rev. Lett. 75(16), 2968 (1995)

    Article  ADS  Google Scholar 

  23. V. Shchukin, D. Bimberg, Strain-driven self-organization of nanostructures on semiconductor surfaces, Appl. Phys. A: Mater. Sci. Process. 67, 687 (1998). ISSN 0947-8396

    Google Scholar 

  24. D. Leonard, K. Pond, P. Petroff, Critical layer thickness for self-assembled InAs Islands on GaAs. Phys. Rev. B 50(16), 11687 (1994). ISSN 0163-1829

    Google Scholar 

  25. F. Heinrichsdorff, MOCVD growth and laser applications of In(Ga)As/GaAs Quantum Dots, Dissertation, Technische Universität Berlin, 1998

    Google Scholar 

  26. A. Lenz, H. Eisele, J. Becker, J.-H. Schulze, T.D. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U.W. Pohl, M. Dähne, Atomic structure and optical properties of InAs submonolayer depositions in GaAs. J. Vac. Sci. Technol. B 29(4), 04D104 (2011). ISSN 10711023

    Google Scholar 

  27. I. Krestnikov, N. Ledentsov, A. Hoffmann, D. Bimberg, Arrays of two-dimensional Islands formed by submonolayer insertions: growth, properties, devices. Physica Status Solidi(a) 183(2), 207 (2001). ISSN 0031-8965

    Google Scholar 

  28. N.N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V.A. Shchukin, A.V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähne, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S.S. Mikhrin, A.R. Kovsh, N.D. Zakharov, P. Werner. Submonolayer quantum dots for high speed surface emitting lasers. Nanoscale Res. Lett. 2(9), 417 (2007). ISSN 1931-7573

    Google Scholar 

  29. V. Shchukin D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71(4), 1125 (1999). ISSN 0034-6861

    Google Scholar 

  30. V. Shchukin, D. Bimberg, V. Malyshkin, N. Ledentsov, Vertical correlations and anticorrelations in multisheet arrays of two-dimensional Islands. Phys. Rev. B 57(19), 12262 (1998). ISSN 0163-1829

    Google Scholar 

  31. Z. Xu, D. Birkedal, J.M. Hvam, Z. Zhao, Y. Liu, K. Yang, A. Kanjilal, J. Sadowski, Structure and optical anisotropy of vertically correlated submonolayer InAs/GaAs quantum dots. Appl. Phys. Lett. 82(22), 3859 (2003). ISSN 00036951

    Google Scholar 

  32. Z. Xu, K. Leosson, D. Birkedal, V. Lyssenko, J.M. Hvam, J. Sadowski, InGaAs/GaAs quantum-dot-quantum-well heterostructure formed by submonolayer deposition. Nanotechnology 14(12), 1259 (2003). ISSN 0957-4484

    Google Scholar 

  33. Z. Xu, Y. Zhang, J.M. Hvam, J. Xu, X. Chen, W. Lu, Carrier dynamics in submonolayer InGaAs/GaAs quantum dots. Appl. Phys. Lett. 89(1), 013113 (2006). ISSN 00036951

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim David Germann .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Germann, T.D. (2012). Semiconductor Laser Concepts. In: Design and Realization of Novel GaAs Based Laser Concepts. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34079-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34079-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34078-9

  • Online ISBN: 978-3-642-34079-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics