Skip to main content

Theoretical Approach of Crystal and Film Growths of Materials Used in Medical Imaging System

  • Chapter
  • First Online:
Book cover Radiation, Ionization, and Detection in Nuclear Medicine
  • 2274 Accesses

Abstract

Mankind from the prehistoric age has admired crystals. However, the significance of that beauty for the engineers and the scientists is on the basis of structural symmetry, simplicity, and purity. These characteristics endow crystals with unique physical and chemical properties, which have been used to cause a major transformation of the electronic industry. The systematic growth of synthetic crystals might be viewed as an art rather than science and has been described by some experts in this field as a new agriculture. The list of the synthetic crystals grown in the laboratory is far from exhaustive, but it shows how several old substances develop unique properties when they have the form of crystals. Figure 6.1 shows the many facets cut in a synthetic diamond crystal—a highly refractive, colorless crystalline allotrope of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. May PW (2000) Diamond thin film – a 21st century material. Philos Trans R Soc Lond A 358:473

    Article  CAS  Google Scholar 

  2. Hollingsworth MS (2010) IEEE NSS-MIC-RTSD joint conference, Knoxville, TN, 30 Oct–6 Nov 2010

    Google Scholar 

  3. Wermes N (2004) Trends in pixel detectors. IEEE Trans Nucl Sci 31(3):1006

    Article  Google Scholar 

  4. Zao S et al (1993) Electrical properties in CVD diamond films, semiconductors for room temperature radiation detector applications. Material research symposium. Apr 1993, San Francisco, MRS Pub. Pittsburgh, p 257

    Google Scholar 

  5. Bol J et al (2007) Diamond thin film detectors for beam monitoring devices. Phys Stat Solidi 204:2997–3003

    Article  CAS  Google Scholar 

  6. Adam W et al (2006) Radiation hard diamond sensors for future tracking applications. Nucl Instrum Methods A 565:278

    Article  CAS  Google Scholar 

  7. BenMoussa A et al (2009) Recent developments of wide band gap semiconductor base UV sensors. Diamond Relat Mater 18(5–8):860

    Article  CAS  Google Scholar 

  8. Kirkpatrick RJ (1975) Crystal growth from the melt: a review. Am Mineral 60:798–814

    CAS  Google Scholar 

  9. Jackson KA (1967) Current concepts in crystal growth from the melt. In: Progress in solid state chemistry, 4th edn. Pergamon Press, Oxford

    Google Scholar 

  10. Jackson KA, Uhlmann DR, Hunt JD (1967) On the nature of crystal growth from the melt. J Cryst Growth 1:1

    Article  CAS  Google Scholar 

  11. Culvert PD, Ulhmann DR (1972) Surface nucleation growth theory for large and small crystal cases and the significance of transient nucleation. J Cryst Growth 12:291

    Article  Google Scholar 

  12. Barvinschi F, Duffar T, Santailer JL (2000) Numerical simulation of heat transfer in transparent and semitransparent crystal growth process. J Opto Electron Adv Mater 2(4):327

    CAS  Google Scholar 

  13. Lapika P, Furmanski P (2010) Fixed grid simulation of radiation-conduction dominated solidification process. J Heat Transfer 132(2):023504

    Article  Google Scholar 

  14. Naraghi MHN, Kassemi M (1988) Radiative transfer in rectangular enclosures. In: Proceeding of national heat transfer conference, vol 7, Kyongju, Korea, pp 457–462

    Google Scholar 

  15. Rudolph J, Winkler J, Woittenneck F (2008) Non-linear finite & infinite dimensional systems. In: Flatness based approach to heat conduction problem in a crystal growth. Springer, New York

    Google Scholar 

  16. Carruthers JR (1979) Dynamics of crystal growth. In: Bardsley W, Hurle DTJ, Mullin JB (eds) Crystal growth. North Holland, Amsterdam

    Google Scholar 

  17. Lan CW (2004) Recent progress of crystal growth and modeling and growth control. Chem Eng Sci 59:1437

    Article  CAS  Google Scholar 

  18. Younsi R, Harkati A, Ouadjaout D (2007) Computational fluid dynamics applied to thermocapillary convection during crystal growth of silicon. Adv Model Optimiz 9(7):195

    Google Scholar 

  19. Younsi R, Harkati A, Ouadjaout D (2007) Computional fluid dynamics applied to thermocapillary convection during floating crystal growth of silicon. Adv Model Optimiz 9(2):195

    Google Scholar 

  20. Gilman JJ (ed) (1963) The art and science of growing crystals. Wiley, New York

    Google Scholar 

  21. Park JS, Seo M, Oh HJ, Junk JH (2008) Silicon ingot diameter modeling in CZ process and its dynamic simulation. Korean J Chem Eng 25(4):623–630

    Article  CAS  Google Scholar 

  22. Brandle CD (1979) Czochralski growth of large oxide crystals. In: Bardsley W, Hurle DTJ, Mulin JB (eds) Crystal growth. North Holland, Amsterdam

    Google Scholar 

  23. Shimura N et al (2006) Zr doped GSO:Ce single crystal and their scintillation performance. IEEE Trans Nucl Sci 53(5):2519

    Article  CAS  Google Scholar 

  24. Huber JS, Moses WW, Andreaco MS, Peterson O (2001) An LSO scintillator array for a PET detector module with depth interaction measurement. IEEE Trans Nucl Sci 48(6):664

    Google Scholar 

  25. Kuroda K (2002) Progress in photorefractive non-linear optics. CRC Press, Boca Raton, FL

    Google Scholar 

  26. Wilcox WR, Regel LL (1995) Detached solidification. Microgravity Sci Technol 8:56

    Google Scholar 

  27. Durby JJ, Lun L, Yeckel A (2007) Strategies for the coupling of global and local crystal growth models. J Cryst Growth 303:114

    Google Scholar 

  28. Kim GT, Duval WMB, Glicksman ME (1997) Effects of asymmetric temperature profile on thermal convection during physical vapor transport of Hg2Cl2. Chem Eng Commun 162(1):45

    Article  CAS  Google Scholar 

  29. Markham BL, Greenwall DW, Rosenberger F (1983) Convective and morphological instability in vapor crystal growth. Report submitted to NSF under Grant DMR-7913183 and by the National Aeronautics and Space Administration under Grant NSG-1534, Department of Physics University Utah, Salt Lake City, 84112

    Google Scholar 

  30. Wang Y, Regal LL, Wilcox WR (2002) Approximate material balance solution to the moving meniscus model of detached solidification. J Cryst Growth 243:546

    Article  CAS  Google Scholar 

  31. de Almeida VF, Carlos Rojo J (2002) Simulation of transport phenomena in aluminum nitride single crystal growth. Technical report ORNL/TM-2002/64, Oak Ridge National Laboratory, Oak Ridge, Mar 2002

    Google Scholar 

  32. Markham BL, Greenwell DW, Rosenberger F (1981) Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules. J Cryst Growth 51(3):426

    Article  Google Scholar 

  33. Kim GT (2005) Convective-diffusive transport in mercurous chloride (Hg2Cl2) crystal growth. J Ceram Process Res 6(2):110

    Google Scholar 

  34. Sanghamitra S, Wilcox WR (1975) Influence of crucible on interface shape, position and sensitivity in vertical Bridgman Stockberger techniques. J Crystal Growth 28:36

    Google Scholar 

  35. Haung GE, Elwell D, Feigelson RS (1983) Influence of thermal conductivity on interface shape during Bridgman growth. J Cryst Growth 64: 441 and Lan CW, Young DT (1998) Dynamic simulation of the vertical zone melting crystal growth. Int J Heat Trans 41:4351

    Google Scholar 

  36. Tiller WA (1963) Principles of solidification. In: Gilman JJ (ed) The art and science of growing crystals. Wiley, New York, p 276

    Google Scholar 

  37. Lun L, Yeckel A, Reed M, Szeles C, Daotidis P, Derby J (2006) On the effects of furnace gradients on interface shape during the growth of cadmium zinc telluride in EDG furnace. J Cryst Growth 35:290

    Google Scholar 

  38. Choi BW, Wadley HNG (2000) In situ studies of Cd1-x Znx Te nucleation and crystal growth. J Cryst Growth 208:219

    Article  CAS  Google Scholar 

  39. Batur C, Duval WMB, Bennett RJ (1999) Performance of Bridgman furnace operating under projective control. In: IEEE proceedings American control conference, Vol. 6, San Diego, June 2–4 1999

    Google Scholar 

  40. Rudolph P, Koh HJ, Schafer N, Fakuda T (1995) The crystal imperfection depends on superheating…..semiconductor compounds. J Cryst Growth 1666(1–9):578

    Google Scholar 

  41. Szeles C, Driver MC (1998) Growth and properties of semi-insulating CdZnTe for radiation detector applications. In: SPIE conference on hard X-ray and gamma-ray detector physics and applications, San Diego, July 1998, vol 3446, p 1

    Google Scholar 

  42. Szeles C (2004) Advances in crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors. IEEE Trans Nucl Sci 50(3):1242

    Article  Google Scholar 

  43. Sen S et al (1996) Reduction of CdZnTe substrate defects and relation to epitaxial HgCdTe quality. J Electron Mater 25:1188

    Google Scholar 

  44. Bell RO, Hemmatand N, Wolf F (1970) Cadmium Telluride growth from tellurium solution as a material for nuclear radiation detectors. Phys Stat Sol 1:375

    Google Scholar 

  45. Seidh A et al (2001) 200 mm GaAs crystal growth by the temperature gradient controlled LEC Method. J Cryst Growth 225:561

    Google Scholar 

  46. Jurisch M et al (2005) LEC and VGF growth of SiGaAs single crystals – recent developments and current issues. J Cryst Growth 275(1–2):283

    Article  CAS  Google Scholar 

  47. Dost S, Lent B (2007) Single crystal growth of semiconductors from metallic solutions. Elsevier, Netherlands

    Google Scholar 

  48. Rudolph P (2008) Travelling magnetic fields applied to bulk crystal growth from the melt. J Cryst Growth 310:1298

    Article  CAS  Google Scholar 

  49. Kasjanow H et al (2008) 3d numerical modeling of asymmetry effects of a heater magnet module for VGF and LEC growth under travelling magnetic fields. J Cryst Growth 310:1540

    Article  CAS  Google Scholar 

  50. Capper P (2003) Bulk crystal growth of electronic optical and optoelectronic materials. Wiley, Hoboken

    Google Scholar 

  51. Chen H, Luke PN et al (2008) Conduction of large crystals of cadmium zinc telluride grown by travelling heater method. J Appl Phys 103(1), American Institute of Physics

    Google Scholar 

  52. Gupta TK (2003) Handbook of thick and thin film hybrid microelectronics. Wiley Interscience, Hoboken, p 222

    Book  Google Scholar 

  53. Kagan H et al (1993) Electrical properties in CVD diamond films. In: James RB, Siffert P, Schlesinger T, Franksed L (eds) Electrical properties in CVD Diamond Films, vol 302. Materials Society, Pittsburgh, PA, p 257

    Google Scholar 

  54. Gupta TK et al (2007) Novel X-ray security systems: fast, accurate and affordable. Varian Medical System, CA, Xerox (PARC), CA and RMD, MA, NIST final report

    Google Scholar 

  55. Gupta TK (2003) Handbook of thick and thin film hybrid microelectronics. Wiley Inter-Science, Hoboken

    Book  Google Scholar 

  56. Dislich H (1971) Preparation of multicomponent glass without fluid metals. Glastechn Ber 44:1

    CAS  Google Scholar 

  57. Schmidt H (2006) Considerations about sol-gel process from classical sol-gel to advanced chemical nanotechnologies. J Sol-Gel Sci Technol 40(2–3):115

    Article  CAS  Google Scholar 

  58. Brinker CJ, Scherner CW (1990) Sol-Gel science. Academic, San Diego

    Google Scholar 

  59. Pedroza G, de Azevedo WM, Khoury HJ, Silva EF Jr (2002) Gamma ray detection using sol-gel glass doped with lanthanide ions. Appl Radiat Isot 56(3):563

    Article  PubMed  CAS  Google Scholar 

  60. Wu YC, Parola S, Villanucva-Ibanez O, Mugnier J (2005) Structural characterization and wave guiding properties of YAG thin film obtained by sol-gel process. Opt Mat 27:1471

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gupta, T.K. (2013). Theoretical Approach of Crystal and Film Growths of Materials Used in Medical Imaging System. In: Radiation, Ionization, and Detection in Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34076-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34076-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34075-8

  • Online ISBN: 978-3-642-34076-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics