Skip to main content

General Introduction

  • Chapter
  • First Online:
  • 893 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In unsaturated soils, soil water transport has both a liquid and a vapor phase. This implies the frequent exchange of mass and energy between liquid and vapor. Such a coupled soil moisture and heat transport mechanism in the top shallow soil layer reflects the land surface process, which plays a critical role in partitioning the precipitation into surface runoff, evaporation, and groundwater recharge. Simultaneously, it controls the conversion of incoming solar and atmospheric radiation into sensible, latent, and radiant heat loss. One of the key parameters in the land surface process is soil moisture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abramowitz G (2005) Towards a benchmark for land surface models. Geophys Res Lett 32(22):L22702

    Article  Google Scholar 

  2. Abramowitz G, Pitman A (2007) Systematic bias in land surface models. J Hydrometeorol 8(5):989–1001

    Article  Google Scholar 

  3. Abramowitz G, Leuning R, Clark M, Pitman A (2008) Evaluating the performance of land surface models. J Clim 21(21):5468–5481

    Article  Google Scholar 

  4. Bastidas LA, Gupta HV, Sorooshian S, Shuttleworth, WJ, Yang ZL (1999) Sensitivity analysis of a land surface scheme using multicriteria methods. J Geophys Res Atm 104(D16):19481–19490

    Google Scholar 

  5. Bastidas LA, Hogue TS, Sorooshian S, Gupta HV, Shuttleworth WJ (2006) Parameter sensitivity analysis for different complexity land surface models using multicriteria methods. J Geophys Res Atmos 111:D20101

    Article  Google Scholar 

  6. Bernard R, Vauclin M, Vidal-Madjar D (1981) Possible use of active microwave remote sensing data for prediction of regional evaporation by numerical simulation of soil water movement in the unsaturated zone. Water Resour Res 17:1603–1610

    Article  Google Scholar 

  7. Beven K (1989) Changing ideas in hydrology—the case of physically-based models. J Hydrol 105(1–2):157–172

    Article  Google Scholar 

  8. Bittelli M, Ventura F, Campbell GS, Snyder RL, Gallegati F, Pisa PR (2008) Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. J Hydrol 362(3–4):191–205

    Article  Google Scholar 

  9. Cahill AT, Parlange MB (1998) On water vapor transport in field soils. Water Resour Res 34(4):731–739

    Article  CAS  Google Scholar 

  10. Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29:1107–1122

    Article  Google Scholar 

  11. Clark MP, Rupp DE, Woods RA, Zheng X, Ibbitt RP, Slater AG, Schmidt J, Uddstrom MJ (2008) Hydrological data assimilation with the ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model. Adv Water Resour 31(10):1309–1324

    Article  Google Scholar 

  12. Cornwell AR, Harvey LDD (2007) Soil moisture: a residual problem underlying AGCMs. Clim Chang 84(3–4):313–336

    Article  CAS  Google Scholar 

  13. Cosgrove BA, Lohmann D, Mitchell KE, Houser PR, Wood EF, Schaake JC, Robock A, Sheffield J, Duan QY, Luo LF, Higgins RW, Pinker RT, Tarpley JD (2003) Land surface model spin-up behavior in the North American land data assimilation system (NLDAS). J Geophys Res Atmos 108(D22):8845

    Google Scholar 

  14. Crow WT (2003) Correcting land surface model predictions for the impact of temporally sparse rainfall rate measurements using an ensemble Kalman filter and surface brightness temperature observations. J Hydrometeorol 4:960–973

    Article  Google Scholar 

  15. Crow W, Wood EF (2003) The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97. Adv Water Resour 26:137–149

    Article  Google Scholar 

  16. Das NN, Mohanty BP (2006) Root zone soil moisture assessment using remote sensing and vadose zone modeling. Vadose Zone J 5:296–307

    Article  Google Scholar 

  17. De Lannoy GJM, Reichle RH, Houser PR, Pauwels VRN, Verhoest NEC (2007) Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour Res 43(9):W09410

    Article  Google Scholar 

  18. De Lannoy GJM, Houser PR, Verhoest NEC, Pauwels VN (2009) Adaptive soil moisture profile filtering for horizontal information propagation in the independent column-based CLM2.0. J Hydrometeorol 10:766–779

    Article  Google Scholar 

  19. Deardorff JW (1978) Efficient prediction of ground surface-temperature and moisture, with inclusion of a layer of vegetation J Geophys Res Ocean Atmos 83(NC4):1889–1903

    Google Scholar 

  20. Demaria EM, Nijssen B, Wagener T (2007) Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model. J Geophys Res Atmos 112(D11):D11113

    Google Scholar 

  21. Desborough CE (1999) Surface energy balance complexity in GCM land surface models. Clim Dyn 15(5):389–403

    Article  Google Scholar 

  22. Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986) Biosphere atmosphere transfer scheme (BATS) for the NCAR community climate model. NCAR technical note, pp 72

    Google Scholar 

  23. Dickinson RE, Henderson-Sellers A, Rosenzweig C, Sellers PJ (1991) Evapotranspiration models with canopy resistance for use in climate models- a review. Agric For Meteorol 54(2–4):373–388

    Article  Google Scholar 

  24. Dickinson RE, Oleson KW, Bonan G, Hoffman F, Thornton P, Vertenstein M, Yang Z, Zeng X (2006) The community land model and its climate statistics as a component of the community climate system model. J Clim 19(11):2302–2324

    Article  Google Scholar 

  25. Duan QY, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031

    Article  Google Scholar 

  26. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res Atmos 108(D22):8851

    Google Scholar 

  27. Entekhabi D, Eagleson PS (1991) Climate and the equilibrium state of land surface hydrology parameterizations. Surv Geophys 12(1–3):205–220

    Article  Google Scholar 

  28. Entekhabi D, Nakamura H, Njoku EG (1994) Solving the inverse problems for soil-moisture and temperature profiles by sequential assimilation of multifrequency remotely-sensed observations. IEEE Trans Geosci Remote Sens 32(2):438–448

    Article  Google Scholar 

  29. Entekhabi D, Njoku E, Houser P, Spencer M, Doiron T, Smith J, Girard R, Belair S, Crow W, Jackson T (2004) The hydrosphere state (HYDROS) mission concept: an earth system pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Trans Geosci Remote Sens 42(10):2184–2195

    Article  Google Scholar 

  30. Evensen G (2006) Data assimilation: the ensemble Kalman filter. Springer, New York

    Google Scholar 

  31. Fox S, Pitman AJ, Boone A, Habets F (2006) The relationship between intermodel differences and surface energy balance complexity in the Rhone-Aggregation Intercomparison Project. J Hydrometeorol 7(1):81–100

    Article  Google Scholar 

  32. Galantowicz JF, Entekhabi D, Njoku EG (1999) Tests of sequential data assimilation for retrieving profile soil moisture and temperature from observed L-band radiobrightness. IEEE Trans Geosci Remote Sens 37(4):1860–1870

    Article  Google Scholar 

  33. Georgakakos KP, Baumer OW (1996) Measurement and utilization of on-site soil moisture data. J Hydrol 184:131–152

    Article  CAS  Google Scholar 

  34. Gove JH, Hollinger DY (2006) Application of a dual unscented Kalman filter for simultaneous state and parameter estimation in problems of surface atmosphere exchange. J Geophys Res Atmos 111:D08S07

    Google Scholar 

  35. Gowing JW, Konukcu F, Rose DA (2006) Evaporative flux from a shallow watertable: the influence of a vapor–liquid phase transition. J Hydrol 321:77–89

    Google Scholar 

  36. Grifoll J, Cohen Y (1999) A front-tracking numerical algorithm for liquid infiltration into nearly dry soils. Water Resour Res 35(8):2579–2585

    Article  Google Scholar 

  37. Gu LM, Ho CK, Plumb OA, Webb SW (1998) Diffusion with condensation and evaporation in porous media. Sandia National Laboratories, SAND98-0618C Albuquerque, NM, USA

    Google Scholar 

  38. Gupta HV, Bastidas LA, Sorooshian S, Shuttleworth WJ, Yang ZL (1999) Parameter estimation of a land surface scheme using multicriteria methods. Jeophys Res Atmos 104(D16):19491–19503

    Google Scholar 

  39. Gurr CG, Marshall TJ, Hutton JT (1952) Movement of water in soil due to a temperature gradient. Soil Sci 74(5):335–345

    Article  CAS  Google Scholar 

  40. Hazeleger W, Severijns C, Semmler T, Stefanescu S, Yang ST, Wang XL, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kallberg P, Koenigk T, McGrath R, Miranda P, Van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willen U (2010) EC-earth a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91(10):1357–1363

    Article  Google Scholar 

  41. Heitman JL, Horton R, Ren T, Nassar IN, Davis DD (2008) A test of coupled soil heat and water transfer prediction under transient boundary temperatures. Soil Sci Soc Am J 72(5):1197–1207

    Article  CAS  Google Scholar 

  42. Hoeben R, Troch PA (2000) Assimilation of active microwave observation data for soil moisture profile estimation. Water Resour Res 36(10):2805–2819

    Article  Google Scholar 

  43. Hogue TS, Bastidas L, Gupta H, Sorooshian S, Mitchell K, Emmerich W (2005) Evaluation and transferability of the Noah land surface model in semiarid environments. J Hydrometeorol 6(1):68–84

    Article  Google Scholar 

  44. Houser PR, De Lannoy GJM, Walker JP (2010). Land surface data assimilation. In: Lahoz W, Khattatov B, Menard R (eds) Data assimilation: making sense of observation. Springer, Heidelberg, pp 549–597

    Google Scholar 

  45. Houser PR,Shuttleworth WJ, Famiglietti JS, Gupta HV, Syed KH, Goodrich DC (1998) Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour Res 34(12):3405–3420

    Google Scholar 

  46. Jackson TJ, Schmugge TJ, Nicks AD, Coleman GA, Engman ET (1981) Soil moisture updating and microwave remote sensing for hydrological simulation. Hydrol Sci Bull 26:305–319

    Article  Google Scholar 

  47. Jassal RS, Novak MD, Black TA (2003) Effect of surface layer thickness on simultaneous transport of heat and water in a bare soil and its implications for land surface schemes. Atmos Ocean 41(4):259–272

    Article  Google Scholar 

  48. Jury WA, Letey JJ (1979) Water vapor movement in soil: reconciliation of theory and experiment. Soil Sci Soc Am J 43(5):823–827

    Article  CAS  Google Scholar 

  49. Katul G, Wendroth O, Parlange MB, Puente CE, Folegatti MV, Nielsen DR (1993) Estimation of in situ hydraulic conductivity function from nonlinear filtering theory. Water Resour Res 29:1063–1070

    Article  Google Scholar 

  50. Kerr YH, Waldteufel P, Wigneron JP, Martinuzzi J, Font J, Berger M (2001) Soil moisture retrieval from space: the soil moisture and ocean salinity (SMOS) mission. Geoscience and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing 39(8):1729–1735

    Article  Google Scholar 

  51. Koster RD, Guo ZC, Dirmeyer PA, Bonan G, Chan E, Cox P, Davies H, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson KW, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue YK, Yamada T (2006) GLACE: the global land-atmosphere coupling experiment. Part I: Overview. J Hydrometeorol 7(4):590–610

    Article  Google Scholar 

  52. Koster RD, Guo ZC, Yang RQ, Dirmeyer PA, Mitchell K, Puma MJ (2009) On the nature of soil moisture in land surface models. J Clim 22(16):4322–4335

    Article  Google Scholar 

  53. Kumar SV, Reichle RH, Peters-Lidard CD, Koster RD, Zhan XW, Crow WT, Eylander JW, Houser PR (2008) A land surface data assimilation framework using the land information system: description and applications. Adv Water Res 31(11):1419–1432

    Google Scholar 

  54. Kumar SV, Reichle RH, Koster RD, Crow WT, Peters-Lidard CD (2009) Role of subsurface physics in the assimilation of surface soil moisture observations. J Hydrometeorol 10(6):1534–1547

    Article  Google Scholar 

  55. Li J, Islam S (1999) On the estimation of soil moisture profile and surface fluxes partitioning from sequential assimilation of surface layer soil moisture. J Hydrol 220(1–2):86–103

    Article  Google Scholar 

  56. Liang X, Xie ZH (2001) A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Adv Water Resour 24(9–10):1173–1193

    Article  Google Scholar 

  57. Liu G, Chen Y, Zhang D (2008) Investigation of flow and transport processes at the MADE site using ensemble Kalman filter. Adv Water Resour 31:975–986

    Article  CAS  Google Scholar 

  58. Liu JM, Ding YG, Zhou XJ, Li Y (2010) A parameterization scheme for regional average runoff over heterogeneous land surface under climatic rainfall forcing. Acta Meteorologica Sinica 24(1):116–122

    Google Scholar 

  59. Manabe S (1969) Climate and ocean circulation. 1. Atmospheric circulation and hydrology of earth’s surface. Mon Weather Rev 97(11):739–774

    Article  Google Scholar 

  60. Massman WJ (2006) Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 1. An analytical model. J Geophys Res Biogeosci 111:G03004

    Article  Google Scholar 

  61. Mihailovic DT, Rajkovic B, Lalic B, Dekic L (1995) Schemes for parameterizing evaporation from a non-plant-covered surface and their impact on partitioning the surface-energy in land air exchange parameterization. J Appl Meteorol 34(11):2462–2475

    Article  Google Scholar 

  62. Milly PCD (1982) Moisture and heat transport in hysteretic, inhomogeneous porous media: a matric head-based formulation and a numerical model. Water Resour Res 18(3):489–498

    Article  Google Scholar 

  63. Milly PCD (1984) A simulation analysis of thermal effects on evaporation from soil. Water Resour Res 20(8):1087–1098

    Google Scholar 

  64. Milly PCD (1986) Integrated remote sensing modelling of soil moisture: sampling frequency, response time, and accuracy of estimates. Integrated design of hydrological networks. In: Proceedings of the Budapest Symposium, Budapest, IAHS Publication No 158, pp 201–211

    Google Scholar 

  65. Milly PCD, Kabala Z (1986) Integrated modelling and remote sensing of soil moisture. Hydrologic applications of space technology. In: Proceedings of the Cocoa beach workshop, Florida, IAHS Publication No 160, pp 331–339

    Google Scholar 

  66. Mitchell KE, Houser PR, Wood EF, Schaake JC, Tarpley JD, Lettenmaier DP, Higgins RW, Marshall C, Lohmann D, Ek M (1999) GCIP land data assimilation system (LDAS) project now underway. GEWEX News 9:3–6

    Google Scholar 

  67. Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Sheffield J, Duan QY, Luo LF, Higgins RW, Pinker RT, Tarpley JD, Lettenmaier DP, Marshall CH, Entin JK, Pan M, Shi W, Koren V, Meng J, Ramsay BH, Bailey AA (2004) The multi-institution North American land data assimilation system (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res Atmos 109:D07S90

    Google Scholar 

  68. Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147

    Article  Google Scholar 

  69. Muchoney D, Strahler A (2002) Regional vegetation mapping and direct land surface parameterization from remotely sensed and site data. Int J Remote Sens 23(6):1125–1142

    Article  Google Scholar 

  70. Nijssen B, Bastidas LA (2005) Land-atmosphere models for water and energy cycle studies. In: Anderson MG (ed) Encyclopedia of hydrological sciences. Wiley, Chichester, pp 3089–3101

    Google Scholar 

  71. Novak MD (2010) Dynamics of the near-surface evaporation zone and corresponding effects on the surface energy balance of a drying bare soil. Agr Forest Meteorol 150(10):1358–1365

    Google Scholar 

  72. Ni-Meister W (2008) Recent advances on soil moisture data assimilation. Phys Geogr 29(1):19–37

    Article  Google Scholar 

  73. Philip JR, de Vries DA (1957) Moisture movement in porous materials under temperature gradient. Trans Am Geophys Union 38(2):222–232

    Google Scholar 

  74. Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int J Climatol 23(5):479–510

    Article  Google Scholar 

  75. Pitman AJ, Abramowitz G (2005) What are the limits to statistical error correction in land surface schemes when projecting the future? Geophys Res Lett 32(L14403):4

    Google Scholar 

  76. Prevot L, Bernard R, Taconet O (1984) Evaporation from a bare soil evaluated using a soil water transfer model and remotely sensed surface soil moisture data. Water Resour Res 20:311–316

    Article  Google Scholar 

  77. Reichle RH (2008) Data assimilation methods in the earth sciences. Adv Water Resour 31(11):1411–1418

    Article  Google Scholar 

  78. Reichle RH, Koster RD (2003) Assessing the impact of horizontal error correlations in background fields on soil moisture estimation. J Hydrometeorol 4(6):1229–1242

    Article  Google Scholar 

  79. Reichle RH, McLaughlin DB, Entekhabi D (2002) Hydrologic data assimilation with the ensemble Kalman filter. Mon Weather Rev 130(1):103–114

    Article  Google Scholar 

  80. Reichle RH, Walker JP, Koster RD, Houser PR (2002) Extended versus ensemble Kalman filtering for land data assimilation. J Hydrometeorol 3(6):728–740

    Article  Google Scholar 

  81. Reichle RH, Crow WT, Keppenne CL (2008) An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour Res 44(3):W03423

    Article  Google Scholar 

  82. Robock A, Schlosser CA, Vinnikov KY, Speranskaya NA, Entin JK, Qiu S (1998) Evaluation of the AMIP soil moisture simulations. Global Planet Change 19(1–4):181–208

    Article  Google Scholar 

  83. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Article  Google Scholar 

  84. Rollins RL (1954) Movement of soil moisture under a thermal gradient. Highw Res Board Proc 33:492–508

    CAS  Google Scholar 

  85. Salzmann W, Bohne K, Schmidt M (2000) Numerical experiments to simulate vertical vapor and liquid water transport in unsaturated non-rigid porous media. Geoderma 98(3):127–155

    Article  Google Scholar 

  86. Scanlon BR (1992) Evaluation of liquid and vapor water flow in desert soils based on chlorine 36 and tritium tracers and nonisothermal flow simulations. Water Resour Res 28(1):285–297

    Article  CAS  Google Scholar 

  87. Scanlon BR, Milly PCD (1994) Water and heat fluxes in desert soils 1. Field studies. Water Resour Res 30(3):709–720

    Article  Google Scholar 

  88. Scanlon BR, Milly PCD (1994) Water and heat fluxes in desert soils 2. Numerical simulations. Water Resour Res 30(3):721–734

    Article  Google Scholar 

  89. Schrefler BA, Zhan XY (1993) A fully coupled model for water-flow and air-flow in deformable porous-media. Water Resour Res 29(1):155–167

    Article  Google Scholar 

  90. Sellers PJ, Dorman JL (1987) Testing the simple biosphere model (SiB) using point micrometeorological and biophysical data. J Climate Appl Meteorol 26(5):622–651

    Article  Google Scholar 

  91. Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997). Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275(5299):502–509

    Google Scholar 

  92. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate. Earth-Sci Rev 99(3-4):125–161

    Google Scholar 

  93. Seuffert G, Wilker H, Viterbo P, Drusch M, Mahfouf JF (2004) The usage of screen-level parameters and microwave brightness temperature for soil moisture analysis. J Hydrometeorol 5(3):516–531

    Article  Google Scholar 

  94. Shiklomanov IA, Gu W-Z, Lu J-J (2004). Experimental research on the role of dew in arid ecosystem of Gobi desert, Inner Mongolia. In: Ru-Ze Xi, K-P Seiler, We-Zu Gu (ed) Research basins and hydrological. Kluwer Academic Publishers, Dordrecht, pp 329–332

    Google Scholar 

  95. Shu Q, Kemblowsky MW, McKee M (2005) An application of ensemble Kalman filter in integral-balance subsurface modeling. Stoch Env Res Risk Assess 19:361–374

    Article  Google Scholar 

  96. Slater AG, Clark MP (2006) Snow data assimilation via an ensemble Kalman filter. J Hydrometeorol 7(3):478–493

    Article  Google Scholar 

  97. Smith WO (1943) Thermal transfer of moisture in soils. Trans Am Geophys Un 24:511–560

    Google Scholar 

  98. Staple WJ, Lehane JJ (1954) Movement of moisture in unsaturated soils. Can J Agr Sci 34:329–342

    CAS  Google Scholar 

  99. Stieglitz M, Rind D, Famiglietti J, Rosenzweig C (1997) An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling. J Clim 10(1):118–137

    Article  Google Scholar 

  100. Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6(1):85–99

    Article  Google Scholar 

  101. Su Z, Schmugge T, Kustas WP, Massman WJ (2001) An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J Appl Meteorol 40(11):1933–1951

    Article  Google Scholar 

  102. Su Z, Yacob A, Wen J, Roerink G, He YB, Gao BH, Boogaard H, van Diepen C (2003) Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain. Phys Chem Earth 28(1–3):89–101

    Google Scholar 

  103. Taylor SA, Cavazza L (1954) The movement of soil moisture in response to temperature gradients. Proc Soil Sci Soc Am 18:351–360

    Article  Google Scholar 

  104. Thiemann M, Trosset M, Gupta H, Sorooshian S (2001) Bayesian recursive parameter estimation for hydrological models. Water Resour Res 37:2521–2535

    Article  Google Scholar 

  105. Toll D, Arsenault K, Houser P, Entin J, Cosgrove B, Peters-Lidard C, Rodell M (2004). Terrestrial water and energy systems for water resource applications. Sensors, Systems and Next-Generation Satellites Vii. R. Meynart, S. P. Neeck, H. Shimoda, J. B. Lurie and M. Aten. 5234:744–753

    Google Scholar 

  106. van den Hurk BJJM (2002) European LDAS established. GEWEX News 12(2):9–9

    Google Scholar 

  107. van den Hurk BJJM, Ettema J, Viterbo P (2008) Analysis of soil moisture changes in Europe during a single growing season in a new ECMWF soil moisture assimilation system. J Hydrometeorol 9(1):116–131

    Article  Google Scholar 

  108. Vrugt JA, Clark MP, Diks CGH, Duan Q, Robinson BA (2006) Multi-objective calibration of forecast ensembles using Bayesian model averaging. Geophys Res Lett 33(19):L19817, pp 6. doi:10.1029/2006GL027126

  109. Walker JP, Houser PR (2001) A methodology for initialising soil moisture in a global climate model: assimilation of near-surface soil moisture observations. J Geophys Res Atmos 106:11761–11774

    Article  Google Scholar 

  110. Walker JP, Willgoose GR, Kalma JD (2001) One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: a simplified soil moisture model and field application. JHydrometeorol 2(4):356–373

    Article  Google Scholar 

  111. Walker JP, Willgoose GR, Kalma JD (2001) One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: a comparison of retrieval algorithms. Adv Water Resour 24(6):631–650

    Article  Google Scholar 

  112. Walker JP, Willgoose GR, Kalma JD (2002) Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: simplified Kalman filter covariance forecasting and field application. Water Resour Res 38(12):1301

    Article  Google Scholar 

  113. Wang DG, Wang GL, Anagnostou EN (2005) Use of satellite-based precipitation observation in improving the parameterization of canopy hydrological processes in land surface models. J Hydrometeorol 6(5):745–763

    Article  Google Scholar 

  114. Webb SW, Ho CK (1997) Pore-scale modeling of enhanced vapor diffusion in porous media. Sandia National Laboratories SAND-97-2013C, Albuquerque, NM, USA

    Google Scholar 

  115. Webb SW, Ho CK (1998) Review of enhanced vapor diffusion in porous media. Sandia National Laboratories SAND-98-1819C, Albuquerque, NM, USA

    Google Scholar 

  116. Wilker H, Drusch M, Seuffert G, Simmer C (2006) Effects of the near-surface soil moisture profile on the assimilation of L-band microwave brightness temperature. J Hydrometeorol 7(3):433–442

    Article  Google Scholar 

  117. Xia Y, Pittman AJ, Gupta HV, Leplastrier M, Henderson-Sellers A, Bastidas LA (2002) Calibrating a land surface model of varying complexity using multicriteria methods and the Cabauw dataset. J Hydrometeorol 3(2):181–194

    Article  Google Scholar 

  118. Xin X, Liu Q (2010) The two-layer surface energy balance parameterization scheme (TSEBPS) for estimation of land surface heat fluxes. Hydrol Earth Syst Sci 14(3):491–504

    Article  CAS  Google Scholar 

  119. Yang ZL, Dickinson RE, Shuttleworth WJ, Shaikh M (1998) Treatment of soil, vegetation and snow in land surface models: A test of the biosphere–atmosphere transfer Scheme with the HAPEX-MOBILHY, ABRACOS and Russian data. J Hydrol 213(1–4):109–127

    Article  Google Scholar 

  120. Zeng Y, Su Z, Wan L, Wen J (2011) A simulation analysis of advective effect on evaporation using a two-phase heat and mass flow model. Water Resour Res 47(10):W10529. doi:10.1029/2011WR010701

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijian Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeng, Y. (2013). General Introduction. In: Coupled Dynamics in Soil. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34073-4_1

Download citation

Publish with us

Policies and ethics