Skip to main content

Bryostatin 7

  • Chapter
  • First Online:

Abstract

The bryostatins are a family of marine natural products originally isolated from the bryozoan Bugula neritina by Pettit and coworkers in the course of their search for new antineoplastic agents derived from marine organisms [1]. Later, during a large-scale isolation, 18 g of bryostatin 1, the first discovered and most naturally abundant member of this family, was obtained from a collection of 10,000 gallons of wet bryozoan [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For current information, see: http://clinicaltrials.gov

References

  1. Pettit GR, Herald CL, Doubek DL, Herald DL, Arnold E, Clardy J (1982) J Am Chem Soc 104:6846

    Article  CAS  Google Scholar 

  2. Schaufelberger DE, Koleck MP, Beutler JA, Vatakis AM, Alvarado AB, Andrews P, Marzo LV, Muschik GM, Roach J, Ross JT, Lebherz WB, Reeves MP, Eberwein RM, Rodgers LL, Testerman RP, Snader KM, Forenza S (1991) J Nat Prod 54:1265

    Article  CAS  Google Scholar 

  3. Hildebrand M, Waggoner LE, Liu H, Sudek S, Allen S, Anderson C, Sherman DH, Haygood M (2004) Chem Biol 11:1543

    Article  CAS  Google Scholar 

  4. For selected reviews encompassing the biological properties of the bryostatins, see: (a) Hale KJ, Hummersone MG, Manaviazar S, Frigerio M (2002) Nat Prod Rep 19:413; (b) Kortmansky J, Schwartz GK (2003) Cancer Invest 21:924; (c) Wender PA, Baryza JL, Hilinski MK, Horan JC, Kan C, Verma VA (2007) Beyond natural products: synthetic analogs of bryostatin 1. In: Huang Z (ed) Drug discovery research: new frontiers in the post-genomic era, Wiley, Hoboken, NJ, pp 127–162; (d) Hale KJ, Manaviazar S (2010) Chem Asian J 5:704

    Google Scholar 

  5. Wall NR, Mohammad RM, Al-Katib AM (1999) Leuk Res 23:881

    Article  CAS  Google Scholar 

  6. Elgie AW, Sargent JM, Alton P, Peters GJ, Noordhuis P, Williamson CJ, Taylor CG (1998) Leuk Res 22:373

    Article  CAS  Google Scholar 

  7. Oz HS, Hughes WT, Rehg JE, Thomas EK (2000) Microb Pathog 29:187

    Article  CAS  Google Scholar 

  8. Gescher A, Stanwell C, Dale I (1994) Cancer Top 9:3

    Google Scholar 

  9. (a) Nishizuka Y (1992) Science 258:607; (b) Caponigro F, French RC, Kaye SB (1997) Anti-Cancer Drugs 8:26

    Google Scholar 

  10. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka YJ (1982) Biol Chem 257:7874

    Google Scholar 

  11. Blumberg PM, Pettit GR (1992) In: Krosgaard-Larsen P, Christensen CB, Kodof H (eds) New leads and targets in drug research, Munksgaard, Copenhagen, pp 273–285

    Google Scholar 

  12. (a) Dowlati A, Lazarus HM, Hartman P, Jacobberger JW, Whitacre C, Gerson SL, Ksenich P, Cooper BW, Frisa PS, Gottlieb M, Murgo AJ, Remick SC (2003) Clin Cancer Res 9:5929; (b) Barr PM, Lazarus HM, Cooper BW, Schluchter MD, Panneerselvam A, Jacobberger JW, Hsu JW, Janakiraman N, Simic A, Dowlati A, Remick SC (2009) Am J Hematol 84:484; (c) Ajani JA, Jiang Y, Faust J, Chang BB, Ho L, Yao JC, Rousey S, Dakhil S, Cherny RC, Craig C, Bleyer A (2006) Invest New Drugs 24:353

    Google Scholar 

  13. Hongpaisan J, Alkon DL (2007) Proc Natl Acad Sci USA 104:19571

    Article  CAS  Google Scholar 

  14. Sun M-K, Alkon DL (2005) Eur J Pharmacol 512:43

    Article  CAS  Google Scholar 

  15. (a) Etcheberrigaray R, Tan M, Dewachter I, Kuiperi C, Van der Auwera I, Wera S, Qiao L, Bank B, Nelson TJ, Kozikowski AP, Van Leuven F, Alkon DL (2004) Proc Natl Acad Sci USA 101:11141; (b) Alkon DL, Sun M-K, Nelson TJ (2007) Trends Pharmacol Sci 28:51

    Google Scholar 

  16. Sun M-K, Alkon DL (2006) CNS Drug Rev 12:1

    Article  CAS  Google Scholar 

  17. (a) Sun M-K, Hongpaisan J, Nelson TJ, Alkon DL (2008) Proc Natl Acad Sci USA 105:13620; (b) Sun M-K, Hongpaisan J, Alkon DL (2009) Proc Natl Acad Sci USA 106:14676

    Google Scholar 

  18. (a) Perez M, de Vinuesa AG, Sanchez-Duffhues G, Marquez N, Bellido M, Munoz-Fernandez MA, Moreno S, Castor TP, Calzado MA, Munoz E (2010) Curr HIV Res 8:418; (b) Mehla R, Bivalkar-Mehla S, Zhang R, Handy I, Albrecht H, Giri S, Nagarkatti P, Nagarkatti M, Chauhan A (2010) PLos One 5:e11160

    Google Scholar 

  19. Wender PA, Cribbs CM, Koehler KF, Sharkey NA, Herald CL, Kamano Y, Pettit GR, Blumberg PM (1988) Proc Natl Acad Sci USA 85:7197

    Article  CAS  Google Scholar 

  20. For selected examples of Wender’s bryostatin analogues, see: (a) Wender PA, De Brabander J, Harran PG, Jiminez J-M, Koehler MFT, Lippa B, Park C-M, Shiozaki M (1998) J Am Chem Soc 120:4534; (b) Wender PA, De Brabander J, Harran PG, Jiminez J-M, Koehler MFT, Lippa B, Park C-M, Siedenbiedel C, Pettit GR (1998) Proc Natl Acad Sci USA 95:6624; (c) Wender PA, Baryza JL, Bennett CE, Bi FC, Brenner SE, Clarke MO, Horan JC, Kan C, Lacôte E, Lippa BS, Nell PG, Turner TM (2002) J Am Chem Soc 124:13648; (d) Wender PA, Baryza JL, Hilinski MK, Horan JC, Kan C, Verma VA (2007) In: Huang Z (ed) Drug discovery research: new frontiers in the post-genomic era, Wiley, Hoboken, NJ, pp 127–162; (e) Wender PA, DeChristopher BA, Schrier AJ (2008) J Am Chem Soc 130:6658; (f) Wender PA, Verma VA (2006) Org Lett 8:1893; (g) Wender PA, Baryza JL, Brenner SE, DeChristopher BA, Loy BA, Schrier AJ, Verma VA (2011) Proc Natl Acad Sci USA 108:6721

    Google Scholar 

  21. For selected examples of Keck’s bryostatin analogues, see: (a) Keck GE, Truong AP (2005) Org Lett 7:2153; (b) Keck GE, Kraft MB, Truong AP, Li W, Sanchez CC, Kedei N, Lewin N, Blumberg PM (2008) J Am Chem Soc 130:6660; (c) Keck GE, Poudel YB, Welch DS, Kraft MB, Truong AP, Stephens JC, Kedei N, Lewin NE, Blumberg PM (2009) Org Lett 11:593; (d) Keck GE, Li W, Kraft MB, Kedei N, Lewin NE, Blumberg PM (2009) Org Lett 11:2277; (e) Keck GE, Poudel YB, Rudra A, Stephens JC, Kedei N, Lewin NE, Peach ML, Blumberg PM (2010) Angew Chem Int Ed 49:4580

    Google Scholar 

  22. (a) Sudek S, Lopanik NB, Waggoner L E, Hildebrand M, Anderson C, Liu H, Patel A, Sherman DH, Haygood MG (2007) J Nat Prod 70:67; (b) Lopanik NB, Shields J, Buchholz TJ, Rath CM, Hothersall J, Haygood MG, Hakansson K, Thomas CM, Sherman DH (2008) Chem Biol 15:1175; (c) Trindade-Silva AE, Lim-Fong GE, Sharp KH, Haygood MG (2010) Curr Opin Biotechnol 21:834

    Google Scholar 

  23. (a) Kageyama M, Tamura T, Nantz M, Roberts JC, Somfai P, Whritenour DC, Masamune S (1990) J Am Chem Soc 112:7407; (b) Masamune S (1988) Pure Appl Chem 60:1587

    Google Scholar 

  24. (a) Evans DA, Carter PH, Carreira EM, Prunet JA, Charette AB, Lautens M (1998) Angew Chem Int Ed 37:2354; (b) Evans DA, Carter PH, Carreira EM, Charette AB, Prunet JA, Lautens M (1999) J Am Chem Soc 121:7540

    Google Scholar 

  25. (a) Ohmori K, Ogawa Y, Obitsu T, Ishikawa Y, Nishiyama S, Yamamura S (2000) Angew Chem Int Ed 39:2290; (b) Ohmori K (2004) Bull Chem Soc Jpn 77:875

    Google Scholar 

  26. Trost BM, Dong G (2008) Nature 456:485

    Article  CAS  Google Scholar 

  27. Keck GE, Poudel YB, Cummins TJ, Rudra A, Covel JA (2011) J Am Chem Soc 133:744

    Article  CAS  Google Scholar 

  28. Wender PA, Schrier AJ (2011) J Am Chem Soc 133:9228

    Article  CAS  Google Scholar 

  29. Lu Y, Woo SK, Krische MJ (2011) J Am Chem Soc 133:13876

    Article  CAS  Google Scholar 

  30. Manaviazar S, Frigerio M, Bhatia GS, Hummersone MG, Aliev AE, Hale KJ (2006) Org Lett 8:4477

    Article  CAS  Google Scholar 

  31. Trost BM, Dong G (2010) J Am Chem Soc 132:16403

    Article  CAS  Google Scholar 

  32. Green AP, Lee ATL, Thomas EJ (2011) Chem Commun 47:7200

    Article  CAS  Google Scholar 

  33. Masamune S, Sato T, Kim B-M, Wollmann TA (1986) J Am Chem Soc 108:8279

    Article  CAS  Google Scholar 

  34. (a) Julia M, Paris JM (1973) Tetrahedron Lett 14:4833; (b) Kocienski PJ, Lythgoe B, Ruston S (1978) J Chem Soc Perk T 1 829

    Google Scholar 

  35. (a) Katsuki T, Sharpless KB (1980) J Am Chem Soc 102:5974; (b) Rossiter BE, Katsuki T, Sharpless KB (1981) J Am Chem Soc 103:464; (c) Gao Y, Hanson RM, Klunder JM, Ko SY, Masamune H, Sharpless KB (1987) J Am Chem Soc 109:5765

    Google Scholar 

  36. Corey EJ, Katzenellenbogen JA, Posner GH (1967) J Am Chem Soc 89:4245

    Article  CAS  Google Scholar 

  37. Piers E, Morton HE (1980) J Org Chem 45:4263

    Article  CAS  Google Scholar 

  38. (a) Tanaka K, Ohta Y, Fuji K, Taga T (1993) Tetrahedron Lett 34:4071; (b) Tanaka K, Otsubo K, Fuji K (1996) Tetrahedron Lett 37:3735

    Google Scholar 

  39. Inanaga J, Hirata K, Saeki H, Katsuki T, Yamaguchi M (1979) Bull Soc Chem Jpn 52:1989

    Article  CAS  Google Scholar 

  40. Evans DA, Sjogren EB, Weber AE, Conn RE (1987) Tetrahedron Lett 28:39

    Article  CAS  Google Scholar 

  41. Evans DA, Chapman KT, Carreira E (1988) J Am Chem Soc 110:3560

    Article  CAS  Google Scholar 

  42. (a) Ramachandran PV, Xu W-C, Brown HC (1996) Tetrahedron Lett 37:4911; (b) Paterson I, Goodman JM, Lister MA, Schumann RC, McClure CK, Norcross RD (1990) Tetrahedron 46:4663

    Google Scholar 

  43. Evans DA, Hoveyda AH (1990) J Am Chem Soc 112:6447

    Article  CAS  Google Scholar 

  44. Evans DA, Murry JA, Kozlowski MC (1996) J Am Chem Soc 118:5814

    Article  CAS  Google Scholar 

  45. Danishefsky S, Kobayashi S, Kerwin Jr JF (1982) J Org Chem 47:1981

    Google Scholar 

  46. Demuth M, Palomer A, Sluma H-D, Dey AK, Krüger C, Tsay Y-H (1986) Angew Chem Int Ed 25:1117

    Google Scholar 

  47. (a) Zinner H, Wulf G, Heinatz R (1964) Chem Ber 97:3536; (b) Copeland C, Stick RV (1977) Aust J Chem 30:1269; (c) Trost BM, Klun TP (1981) J Am Chem Soc 103:1864

    Google Scholar 

  48. Corey EJ, Fuchs PL (1972) Tetrahedron Lett 13:3769

    Article  Google Scholar 

  49. (a) Ohmori K, Nishiyama S, Yamamura S (1995) Tetrahedron Lett 36:6519; (b) Kolb HC, VanNieuwenhze MS, Sharpless KB (1994) Chem Rev 94:2483

    Google Scholar 

  50. Trost BM, Matsubara S, Caringi JJ (1989) J Am Chem Soc 111:8745

    Article  CAS  Google Scholar 

  51. Liu Y, Song F, Song Z, Liu M, Yan B (2005) Org Lett 5409

    Google Scholar 

  52. Trost BM, Yang H, Wuitschik G (2005) Org Lett 7:4761

    Article  CAS  Google Scholar 

  53. Brown HC, Jadhav PK (1983) J Am Chem Soc 105:2092

    Article  CAS  Google Scholar 

  54. Roth GJ, Liepold B, Müller SG, Bestmann HJ (2004) Synthesis 59

    Google Scholar 

  55. (a) Keck GE, Covel JA, Schiff T, Yu T (2002) Org Lett 4:1189; (b) Yu C-M, Lee J-Y, So B, Hong J (2002) Angew Chem Int Ed 41:161

    Google Scholar 

  56. Keck GE, Welch DS, Poudel YB (2006) Tetrahedron Lett 47:8267

    Article  CAS  Google Scholar 

  57. (a) Keck GE, Tarbet KH, Geraci LS (1993) J Am Chem Soc 115:8467; (b) Costa AL, Piazza MG, Tagliavini E, Trombini C, Umani-Ronchi A (1993) J Am Chem Soc 115:7001

    Google Scholar 

  58. (a) Mukaiyama T, Narasaka K, Banno K (1973) Chem Lett 2:1011; (b) Mukaiyama T, Izawa T, Saigo K (1974) Chem Lett 3:323; (c) Mukaiyama T, Banno K, Narasaka K (1974) J Am Chem Soc 96:7503

    Google Scholar 

  59. (a) Iyer K, Rainier JD (2007) J Am Chem Soc 129:12604; (b) Nicolaou KC, Postema MHD, Claiborne CF (1996) J Am Chem Soc 118:1565; (c) Nicolaou KC, Postema MHD, Yue EW, Nadin A (1996) J Am Chem Soc 118:10335

    Google Scholar 

  60. Okazoe T, Takai K, Utimoto K (1987) J Am Chem Soc 109:951

    Article  CAS  Google Scholar 

  61. For selected reviews, see: (a) Patman RL, Bower JF, Kim IS, Krische MJ (2008) Aldrichim Acta 41:95; (b) Bower JF, Kim IS, Patman RL, Krische MJ (2009) Angew Chem Int Ed 48:34; (c) Bower JF, Krische MJ (2011) Top Organomet Chem 43:107; (d) Hassan A, Krische MJ (2011) Org Process Res Dev 15:1236

    Google Scholar 

  62. (a) Lu Y, Kim IS, Hassan A, Del Valle DJ, Krische MJ (2009) Angew Chem Int Ed 48:5018; (b) Han SB, Hassan A, Kim I-S, Krische MJ (2010) J Am Chem Soc 132:15559; (c) Kumpulainen ETT, Kang B, Krische MJ (2011) Org Lett 13:2484; (d) Gao X, Han H, Krische MJ (2011) J Am Chem Soc 133:12795

    Google Scholar 

  63. (a) Cho C-W, Krische MJ (2006) Org Lett 8:891; (b) Lu Y, Krische MJ (2009) Org Lett 11:3108

    Google Scholar 

  64. (a) Han SB, Kim IS, Han H, Krische MJ (2009) J Am Chem Soc 131:6916; (b) Itoh J, Han SB, Krische MJ (2009) Angew Chem Int Ed 48:6313; (c) Bechem B, Patman RL, Hashmi ASK, Krische MJ (2010) J Org Chem 75:1795

    Google Scholar 

  65. (a) Kim IS, Ngai M-Y, Krische MJ (2008) J Am Chem Soc 130:6340; (b) Kim IS, Ngai M-Y, Krische MJ (2008) J Am Chem Soc 130:14891; (c) Hassan A, Lu Y, Krische MJ (2009) Org Lett 11:3112

    Google Scholar 

  66. (a) Hong Y-T, Cho C-W, Skucas E, Krische MJ (2007) Org Lett 9:3745; (b) Komanduri V, Krische MJ (2006) J Am Chem Soc 128:16448

    Google Scholar 

  67. For amplification of enantiomeric enrichment in the generation of C2-symmetric compounds, see: (a) Kogure T, Eliel EL (1984) J Org Chem 49:576; (b) Midland MM, Gabriel J (1985) J Org Chem 50:1143

    Google Scholar 

  68. (a) Smith AB III, Minbiole KP, Verhoest PR, Schelhaas M (2001) J Am Chem Soc 123:10942; (b) Rychnovsky SD, Griesgraber G, Powers JP (2000) Org Synth 77:1

    Google Scholar 

  69. Trost BM, Yang H, Thiel OR, Frontier AJ, Brindle CS (2007) J Am Chem Soc 129:2206

    Article  CAS  Google Scholar 

  70. For a similar enolization-reduction sequence, see: Lovchik MA, Goeke A, Frater G (2007) J Org Chem 72:2427

    Google Scholar 

  71. Kornblum N, Frazier HW (1966) J Am Chem Soc 88:865

    Article  CAS  Google Scholar 

  72. Almendros P, Rae A, Thomas EJ (2000) Tetrahedron Lett 41:9565

    Article  CAS  Google Scholar 

  73. Nicolaou KC, Estrada AA, Zak M, Lee SH, Safina BS (2005) Angew Chem Int Ed 44:1378

    Article  CAS  Google Scholar 

  74. For chemoselective Johnson–Lemieux oxidation of terminal olefins, see: (a) White JD, Kuntiyong P, Lee TH (2006) Org Lett 8:6039; (b) BouzBouz S, Cossy J (2003) Org Lett 5:3029

    Google Scholar 

  75. (a) Corey EJ, Gilman NW, Ganem BE (1968) J Am Chem Soc 90:5616; (b) Corey EJ, Katzenellenbogen JA, Gilman NW, Roman SA, Erickson BW (1968) J Am Chem Soc 90: 5618; (c) Gilman NW (1971) Chem Commun 733

    Google Scholar 

  76. Maki BE, Scheidt KA (2008) Org Lett 10:4331

    Article  CAS  Google Scholar 

  77. For an overview of “redox economy” in organic synthesis, see: Baran PS, Hoffmann RW, Burns NZ (2009) Angew Chem Int Ed 48:2854

    Google Scholar 

  78. “The ideal synthesis creates a complex skeleton… in a sequence only of successive construction reactions involving no intermediary refunctionalizations, and leading directly to the structure of the target, not only its skeleton but also its correctly placed functionality.” Hendrickson JB (1975) J Am Chem Soc 97:5784

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Krische .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, Y., Krische, M.J. (2012). Bryostatin 7. In: Li, J., Corey, E. (eds) Total Synthesis of Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34065-9_5

Download citation

Publish with us

Policies and ethics