Skip to main content

Fractal Dimension in Epileptic EEG Signal Analysis

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Fractal Analysis is the well developed theory in the data analysis of non-linear time series. Especially Fractal Dimension is a powerful mathematical tool for modeling many physical and biological time signals with high complexity and irregularity. Fractal dimension is a suitable tool for analyzing the nonlinear behaviour and state of the many chaotic systems. Particularly in analysis of chaotic time series such as electroencephalograms (EEG), this feature has been used to identify and distinguish specific states of physiological function.Epilepsy is the main fatal neurological disorder in our brain, which is analyzed by the biomedical signal called Electroencephalogram (EEG). The detection of Epileptic seizures in the EEG Signals is an important tool in the diagnosis of epilepsy. So we made an attempt to analyze the EEG in depth for knowing the mystery of human consciousness. EEG has more fluctuations recorded from the human brain due to the spontaneous electrical activity. Hence EEG Signals are represented as Fractal Time Series.The algorithms of fractal dimension methods have weak ability to the estimation of complexity in the irregular graphs. Divider method is widely used to obtain the fractal dimension of curves embedded into a 2-dimensional space. The major problem is choosing initial and final step length of dividers. We propose a new algorithm based on the size measure relationship (SMR) method, quantifying the dimensional behaviour of irregular rectifiable graphs with minimum time complexity. The evidence for the suitability (equality with the nature of dimension) of the algorithm is illustrated graphically.We would like to demonstrate the criterion for the selection of dividers (minimum and maximum value) in the calculation of fractal dimension of the irregular curves with minimum time complexity. For that we design a new method of computing fractal dimension (FD) of biomedical waveforms. Compared to Higuchi’s algorithm, advantages of this method include greater speed and the criterion to choose the maximum and minimum values for time intervals. Comparisons with the other waveform fractal dimension algorithms are also demonstrated. In order to discriminate the Healthy and the Epileptic EEGs, an improved method of Multifractal Measure such as Generalized Fractal Dimensions (GFD) is also proposed. Finally we conclude that there are significant differences between the Healthy and Epileptic Signals in the designed method than the GFD through graphical and statistical tools. The improved multifractal measure is very efficient technique to analyze the EEG Signals and to compute the state of illness of the Epileptic patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Accardo, A., Affinito, M., Carrozzi, M., Bouquet, F.: Use of the fractal dimension for the analysis of electroencephalographic time series. Biol. Cybern. 77, 339–350 (1997)

    Article  MATH  Google Scholar 

  2. Acharya, U., Faust, O., Kannathal, N., et al.: Non-linear analysis of EEG signals at various sleep stages. Comp. Meth. Prog. Biomed. 80, 37–45 (2005)

    Article  Google Scholar 

  3. Adeli, H., Zhou, Z., Dadmehr, N.: Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Meth. 123(1), 69–87 (2003)

    Article  Google Scholar 

  4. Andrzejak, R., Lehnertz, K., Mormann, F., et al.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64, 061907-1–061907-8 (2001)

    Google Scholar 

  5. Arle, J., Simon, R.: An application of fractal dimension to the detection of transients in the electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 75, 296–305 (1990)

    Article  Google Scholar 

  6. Ayala, M., Cabrerizo, M., Tito, M., Barreto, A., Adjouadi, M.: A spreadsheet application for processing long-term EEG recordings. Comp. Biol. Med. 39, 844–851 (2009)

    Article  Google Scholar 

  7. Barnsley, M.: Fractals Everywhere, 2 edn. Academic, USA (1993)

    MATH  Google Scholar 

  8. Bullmore, E., Brammer, M., Bourlon, P., Alarcon, G., Polkey, C., Elwes, R., Binnie, C.: Fractal analysis of electroencephalographic signals intracerebrally recorded during 35 epileptic seizures: Evaluation of a new method for synoptic visualisation of ictal events. Electroencephalogr. Clin. Neurophysiol. 91, 337–345 (1994)

    Article  Google Scholar 

  9. Burlaga, L., Klein, L.: Fractal structure of the interplanetary magnetic field. J. Geophys. Res. 91, 347 (1986)

    Article  ADS  Google Scholar 

  10. Carlin, M.: Measuring the complexity of non-fractal shapes by a fractal method. Pattern Recognit. Lett. 21(11), 1013–1017 (2000)

    Article  MATH  Google Scholar 

  11. Clinic: Department of Epileptology University of Bonn Medical Centre, B.G.: http://www.epileptologie-bonn.de/. Accessed January 2010

  12. Crevecoeur, G., Hallez, H., Hese, P.V., Asseler, Y., Dupre, L., de Walle, R.V.: EEG source analysis using space mapping techniques. J. Comput. Appl. Math. 215, 339–347 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Cuffin, B.: A method for localizing EEG sources in realistic head models. IEEE Trans. Biomed. Eng. 42, 68–71 (1995)

    Article  Google Scholar 

  14. Diambra, L., Figueiredo, J., Malta, C.: Epileptic activity recognition in EEG recording. J. Phys. A: Math. Gen. 15, L611–L615 (1999)

    Google Scholar 

  15. Easwaramoorthy, D., Uthayakumar, R.: Analysis of biomedical EEG signals using wavelet transforms and multifractal analysis. In: Proceedings of the 1st IEEE International Conference on Communication Control and Computing Technologies, pp. 544–549. IEEE Xplore Digital Library, IEEE, USA (2010)

    Google Scholar 

  16. Easwaramoorthy, D., Uthayakumar, R.: Analysis of EEG signals using advanced generalized fractal dimensions. In: Proceedings of the Second International Conference on Computing, Communication and Networking Technologies, pp. 1–6. IEEE Xplore Digital Library, IEEE, USA (2010)

    Google Scholar 

  17. Easwaramoorthy, D., Uthayakumar, R.: Estimating the complexity of biomedical signals by multifractal analysis. In: Proceedings of the IEEE Students’ Technology Symposium, pp. 6–11. IEEE Xplore Digital Library, IEEE, USA (2010)

    Google Scholar 

  18. Easwaramoorthy, D., Uthayakumar, R.: Improved generalized fractal dimensions in the discrimination between healthy and epileptic EEG signals. J. Comput. Sci. 2(1), 31–38 (2011)

    Article  Google Scholar 

  19. Elger, C., Lehnertz, K.: Seizure prediction by non-linear time series analysis of brain electrical activity. Eur. J. Neurosci. 10, 786–789 (1998)

    Article  Google Scholar 

  20. Esteller, R., Vachtsevanos, G., Echauz, J., Litt, B.: A comparison of waveform fractal dimension algorithms. IEEE Trans. Circ. Syst. 48(2), 177–183 (2001)

    Google Scholar 

  21. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2 edn. Wiley, England (2003)

    Book  MATH  Google Scholar 

  22. Gevins, A., Remonds, A.: Handbook of Electroencephalography and Clinical Neurophysiology, vol. 1. Elsevier, University of Chicago (1987)

    Google Scholar 

  23. Goldberger, A., West, B.: Fractals in physiology and medicine. Yale J. Biol. Med. 60, 421–435 (1987)

    Google Scholar 

  24. Grassberger, P.: Generalized dimensions of strange attractors. Phys. Lett. A 97, 227–320 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  25. Grassberger, P., Proccacia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50(5), 346–349 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  26. Grassberger, P., Proccacia, I.: Measuring the strangeness of strange attractors. Phys. D 9D, 189–208 (1983)

    Article  ADS  Google Scholar 

  27. Hazarika, N., Chen, J., Tsoi, A., Sergejew, A.: Classification of EEG signals using the wavelet transform. Signal Process. 59(1), 61–72 (1997)

    Article  MATH  Google Scholar 

  28. Hentschel, H., Procaccia, I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica 8D, 435–444 (1983)

    MathSciNet  ADS  Google Scholar 

  29. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Phys. D 31, 277–283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Iasemidis, L.: Epileptic seizure prediction and control. IEEE Trans. Biomed. Eng. 50, 549–558 (2003)

    Article  Google Scholar 

  31. Iasemidis, L., Sackellares, J.: The evolution with time of the spatial distribution of the largest lyapunov exponent on the human epileptic cortex. In: Measuring Chaos in the Human Brain. pp. 49–82. World Scientific Publishing, Singapore (1991)

    Google Scholar 

  32. Iasemidis, L., Zaveri, H., Sackellares, J., Williams, W.: Phase space topography of the electrocarticogram and the lyapunov exponent in partial seizures. Brain Topogr. 2, 187–201 (1990)

    Article  Google Scholar 

  33. Iasemidis, L., Shiau, D., Sackellares, J., Pardalos, P.: Transition to epileptic seizures: Optimization. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 55–74. American Mathematical Society, USA (1999)

    Google Scholar 

  34. Iasemidis, L., Pardalos, P., Sackellares, J., Shiau, D.: Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J. Combin. Optim. 5, 9–26 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Iasemidis, L., Shiau, D., Pardalos, J.S.P., Prasad, A.: Dynamical resetting of the human brain at epileptic seizures: Application of nonlinear dynamics and global optimization techniques. IEEE Trans. Biomed. Eng. 51(3), 493–506 (2004)

    Article  Google Scholar 

  36. Jain, A., Dubes, R.: Algorithm for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  37. Kalauzi, A., Spasic, S.: Consecutive differences as a method of signal fractal analysis. Fractals 13(4), 283–292 (2005)

    Article  Google Scholar 

  38. Kannathal, N., Acharya, U., Lim, C., et al.: Characterization of EEG - A comparative study. Comp. Meth. Progr. Biomed. 80, 17–23 (2005)

    Article  Google Scholar 

  39. Kannathal, N., Lim, C., Acharya, U., et al.: Entropies for detection of epilepsy in EEG. Comp. Meth. Progr. Biomed. 80, 187–194 (2005)

    Article  Google Scholar 

  40. Katz, M.: Fractals and the analysis of waveforms. Comp. Biol. Med. 18(3), 145–156 (1988)

    Article  Google Scholar 

  41. Kulish, V., Sourin, A., Sourina, O.: Human electroencephalograms seen as fractal time series: Mathematical analysis and visualization. Comp. Biol. Med. 36, 291–302 (2006)

    Article  Google Scholar 

  42. Lakshmanan, M., Rajasekar, S.: Nonlinear Dynamics: Integrability, Chaos and Patterns. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  43. Lehnertz, K., Elger, C.: Can epileptic seizures be predicted? evidence from nonlinear time series analysis of brain electrical activity. Phys. Rev. Lett. 80, 5019–5022 (1998)

    Article  ADS  Google Scholar 

  44. Litt, B., Esteller, R., Echauz, J., Maryann, D., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., Vachtservanos, G.: Epileptic seizures may begin hours in advance of clinical onset: A report of five patients. Neuron 30, 51–64 (2001)

    Article  Google Scholar 

  45. Maiwald, T., Winterhalder, M., Aschenbrenner-Scheibe, R., Voss, H., Schulze-Bonhage, A., Timmer, J.: Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristics. Phys. D 194, 357–368 (2004)

    Article  MATH  Google Scholar 

  46. Mandelbrot, B.: The Fractal Geometry of Nature. W.H. Freeman and Company, New York (1983)

    Google Scholar 

  47. Mandelbrot, B.: Negative fractal dimensions and multifractals. Phys. A 163, 306–315 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Meyer-Lindenberg, A.: The evolution of complexity in human brain development: An EEG study. Electroencephalogr. Clin. Neurophysiol. 99, 405–411 (1996)

    Article  Google Scholar 

  49. Munck, J., Goncalves, S., Mammoliti, R., Heethaar, R., Silva, F.: Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations. Neuroimage 47, 69–76 (2009)

    Article  Google Scholar 

  50. Nan, X., Jinghua, X.: The fractal dimension of EEG as a physical measure of conscious human brain activities. Bull. Math. Biol. 50(5), 559–565 (1988)

    MathSciNet  MATH  Google Scholar 

  51. Normant, F., Tricot, C.: Method for evaluating the fractal dimension of curves using convex hulls. Phys. Rev. A 43, 6518–6525 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  52. Ocak, H.: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 2027–2036 (2009)

    Article  Google Scholar 

  53. Ouyang, G., Li, X., Guan, X.: Application of wavelet based similarity analysis to epileptic seizure prediction. Comp. Biol. Med. 37, 430–437 (2007)

    Article  Google Scholar 

  54. Pachori, R.: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process. Article ID 293056 (2008)

    Google Scholar 

  55. Paivinen, N., Lammi, S., Pitkanen, A., et al.: Epileptic seizure detection: A nonlinear view point. Comp. Meth. Progr. Biomed. 79, 151–159 (2005)

    Article  Google Scholar 

  56. Paramanathan, P., Uthayakumar, R.: An algorithm for computing the fractal dimension of waveforms. Appl. Math. Comput. 195(2), 598–603 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Paramanathan, P., Uthayakumar, R.: Application of fractal theory in analysis of human electroencephalogram signals. Comp. Biol. Med. 38(3), 372–378 (2008)

    Article  MathSciNet  Google Scholar 

  58. Paramanathan, P., Uthayakumar, R.: Size measure relationship method for fractal analysis of signals. Fractals 16, 235–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Pardalos, P., Sackellares, J., Carney, P., Iasemidis, L.: Quantitative Neuroscience: Models, Algorithms, Diagnostics and Therapeutic Applications. Springer, Berlin (2004)

    Book  Google Scholar 

  60. Petrosian, A.: Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In: Proceedings of IEEE Symposium on Computer Based Medical Systems, pp. 212–217. IEEE Xplore Digital Library, IEEE, USA (1995)

    Google Scholar 

  61. Qiong, X., Xiong, W.: Fractal dimension of voice signal waveforms. Wuhan Univ. J. Nat. Sci. 7(4), 399–402 (2002)

    Article  Google Scholar 

  62. Quyen, M., Martinerie, J., Baulac, M., Varela, F.: Anticipating epileptic seizures in real time by non-linear analysis of similarity between EEG recordings. Neuro Rep. 10, 2149–2155 (1999)

    Google Scholar 

  63. Renyi, A.: On a new axiomatic theory of probability. Acta Math. Hung. 6, 285–335 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  64. Sackellares, J., Iasemidis, L., Shiau, D.: Detection of the preictal transition in scalp EEG. Epilepsia 40, 176 (1999)

    Google Scholar 

  65. Sackellares, J., Iasemidis, L., Gilmore, R., Roper, S.: Epilepsy - When Chaos Fails, Chaos in the Brain? World Scientific, Singapore (2002)

    Google Scholar 

  66. Sebastian, M., Navascues, M., Valdizan, J.: Surface laplacian and fractal brain mapping. J. Comput. Appl. Math. 189(1), 132–141 (2004)

    MathSciNet  ADS  Google Scholar 

  67. Shannon, C.: The Mathematical Theory of Communication. University of Illinois Press, Champaign (1998)

    Google Scholar 

  68. Shelberg, M.: The development of a curve and surface algorithm to measure fractal dimensions. Master’s thesis, Ohio State University (1982)

    Google Scholar 

  69. Spasic, S., Kalauzi, A., Culic, M., Grbic, G., Martac, L.: Fractal analysis of rat brain activity injury. Med. Biol. Eng. Comput. 43(4), 345–348 (2005)

    Article  Google Scholar 

  70. Tricot, C.: Curves and Fractal Dimension. Springer, New York (1995)

    Book  MATH  Google Scholar 

  71. Ubeyli, E.: Analysis of eeg signals using lyapunov exponents. Neural Netw. World 16(3), 257–273 (2006)

    Google Scholar 

  72. Ubeyli, E.: Statistics over features: EEG signals analysis. Comp. Biol. Med. 39, 733–741 (2009)

    Article  Google Scholar 

  73. Uthayakumar, R., Paramanathan, P.: An algorithm for computing fractal dimension of rectifiable irregular graphs. Appl. Math. Comput. 190(1), 305–308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  74. Uthayakumar, R., Paramanathan, P.: Fractal dimension of irregular digitalized curves by divider method. Appl. Math. Comput. 189(1), 68–71 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  75. Wu, L., Gotman, J.: Segmentation and classification of EEG during epileptic seizures. Electroencephalogr. Clin. Neurophysiol. 106, 344–356 (1998)

    Article  Google Scholar 

  76. Zhang, J., Yang, X., Luo, L., Shao, J., Zhang, C., Ma, J., Wang, G., Liu, Y., Peng, C., Fang, J.: Assessing severity of obstructive sleep apnea by fractal dimension sequence analysis of sleep EEG. Phys. A 388, 4407–4414 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The research work has been supported by University Grants Commission (UGC - MRP & SAP), Government of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Uthayakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uthayakumar, R. (2013). Fractal Dimension in Epileptic EEG Signal Analysis. In: Banerjee, S., Rondoni, L. (eds) Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 3. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34017-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34017-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34016-1

  • Online ISBN: 978-3-642-34017-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics