Skip to main content

Spectroscopic Ellipsometry and Magneto-Optical Kerr Spectroscopy of Magnetic Garnet Thin Films Incorporating Plasmonic Nanoparticles

  • Chapter
  • First Online:
Ellipsometry at the Nanoscale
  • 3216 Accesses

Abstract

Ferrimagnetic yttrium iron garnet (YIG) thin films incorporating plasmonic Au nanoparticles were prepared. Magneto-optical (MO) Kerr spectroscopy was carried out. The polar MO Kerr spectra in wavelength between 400 and 800 nm show that, by incorporating the Au nanoparticles, Kerr rotation angles become negative values in the region where the localized surface plasmon (LSP) resonance of the Au nanoparticles is located. Spectroscopic ellipsometry was performed and complex electric permittivity (dielectric function, \(\epsilon \)) of the films was obtained. An anomalous dispersion of Re[\(\epsilon \)] is clearly observed in the visible region originating from LSP of Au nanoparticles. The influence of \(\epsilon \) on the MO Kerr properties of the nanocomposite films and the physics underlying the anomalous Kerr rotation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Luppin, in Electromagnetic Surface Modes, ed. by A.D. Boardman (Wiley, Chichester, 1982)

    Google Scholar 

  2. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Article  Google Scholar 

  3. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Nat. Mater. 2, 229 (2003)

    Article  Google Scholar 

  4. X. Luoad, T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004)

    Article  Google Scholar 

  5. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nature 453, 757 (2008)

    Google Scholar 

  6. V.A. Kosobukin, SPIE Proc. 2535, 9 (1995)

    Article  Google Scholar 

  7. H. Feil, C. Haas, Phys. Rev. Lett. 58, 65 (1987)

    Article  Google Scholar 

  8. T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, N. Koshizuka, Phys. Rev. Lett. 60, 1426 (1988)

    Article  Google Scholar 

  9. V.I. Safarov, V.A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, C. Marlière, Phys. Rev. Lett. 73, 3584 (1994)

    Article  Google Scholar 

  10. T.J. Silva, S. Schultz, D. Weller, Appl. Phys. Lett. 65, 658 (1994)

    Article  Google Scholar 

  11. C. Hermann, V.A. Kosobukin, G. Lampel, J. Peretti, V.I. Safarov, P. Bertrand, Phys. Rev. B 64, 235422 (2001)

    Article  Google Scholar 

  12. J. Bremer, V. Vaicikauskas, F. Hansteen, O. Hunderi, J. Appl. Phys. 89, 6177 (2001)

    Article  Google Scholar 

  13. N. Bonod, R. Reinisch, E. Popov, M. Nevière, J. Opt. Soc. Am. B 21, 791 (2004)

    Article  Google Scholar 

  14. M. Abe, T. Suwa, Phys. Rev. B 70, 235103 (2004)

    Article  Google Scholar 

  15. F.J. Kahn, P.S. Pershan, J.P. Remeika, Phys. Rev. 186, 891 (1969)

    Article  Google Scholar 

  16. S. Tomita, T. Kato, S. Tsumnashima, S. Iwata, M. Fujii, S. Hayashi, Phys. Rev. Lett. 96, 167402 (2006)

    Article  Google Scholar 

  17. S. Tomita, M. Fujii, S. Hayashi, A. Terai, N. Nabatova-Gabain, Jpn. J. Appl. Phys. 46, L1032 (2007)

    Article  Google Scholar 

  18. D. Dalacu, L. Martinu, J. Appl. Phys. 87, 228 (2000)

    Article  Google Scholar 

  19. D. Dalacu, L. Martinu, J. Opt. Soc. Am. B 18, 85 (2001)

    Article  Google Scholar 

  20. J.C.G. de Sande, R. Serna, J. Gonzalo, C.N. Afonso, D.E. Hole, A. Naudon, J. Appl. Phys. 91, 1536 (2002)

    Article  Google Scholar 

  21. H. Takeuchi, Jpn. J. Appl. Phys. 14, 1903 (1975)

    Article  Google Scholar 

  22. K. Shinagawa, in Magneto-Optics, ed. by S. Sugano, N. Kojima (Springer, Berlin, 1999)

    Google Scholar 

  23. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)

    Article  Google Scholar 

  24. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  Google Scholar 

  25. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  Google Scholar 

  26. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006)

    Article  Google Scholar 

  27. X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, W.J. Padilla, Phys. Rev. Lett. 107, 045901 (2011)

    Article  Google Scholar 

  28. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    Article  Google Scholar 

  29. J.B. Pendry, A.J. Holden, D.R. Robbins, M.J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)

    Google Scholar 

  30. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996)

    Article  Google Scholar 

  31. S. Tomita, M. Hagiwara, T. Kashiwagi, C. Tsuruta, Y. Matsui, M. Fujii, S. Hayashi, J. Appl. Phys. 95, 8193 (2004)

    Article  Google Scholar 

  32. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  33. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1997)

    Google Scholar 

  34. J.C. Maxwell-Garnet, Philos. Trans. R. Soc. London 203, 385 (1904)

    Article  Google Scholar 

  35. T. Tsuboi, Y. Wasai, N. Nabatova-Gabain, Thin Solid Films 496, 674 (2006)

    Article  Google Scholar 

  36. M. Kildemo, R. Ossikovski, M. Stchakovsky, Thin Solid Films 313–314, 108 (1998)

    Article  Google Scholar 

  37. A.R. Forouhi, I. Bloomer, Phys. Rev. B 34, 7018 (1986)

    Article  Google Scholar 

  38. A.R. Forouhi, I. Bloomer, Phys. Rev. B 38, 1865 (1988)

    Article  Google Scholar 

  39. G.E. Jellison Jr, F.A. Modine, Appl. Phys. Lett. 69, 371 (1996)

    Article  Google Scholar 

  40. X. Gao, D.W. Glenn, S. Heckens, D.W. Thompson, J.A. Woollam, J. Appl. Phys. 82, 4525 (1997)

    Article  Google Scholar 

  41. R.J. Lange, S.J. Lee, K.J. Kim, P.C. Canfield, D.W. Lynch, Phys. Rev. B 63, 035105 (2000)

    Article  Google Scholar 

  42. J.L. Menéndez, B. Bescós, G. Armelles, R. Serna, J. Gonzalo, R. Doole, A.K. Petford-Long, M.I. Alonso, Phys. Rev. B 65, 205413 (2002)

    Article  Google Scholar 

  43. G. Armelles, J.B. Gonzalez-Diaz1, A. Garcia-Martin, J.M. Garcia-Martin, A. Cebollada, M.U. Gonzalez, S. Acimovic, J. Cesario, R. Quidant, G. Badenes, Opt. Express 16, 16104 (2008)

    Google Scholar 

  44. Z. Šimša, H. Le Gall, J. Šimšova, J. Koláček, A. Le Paillier-Malécot, IEEE Trans. Magn. MAG-20, 1001 (1984)

    Google Scholar 

  45. S. LaShell, B.A. McDougall, E. Jensen, Phys. Rev. Lett. 77, 3419 (1996)

    Article  Google Scholar 

  46. E.I. Rashba, Physica E 20, 189 (2004) (and references there in)

    Google Scholar 

  47. V.I. Belotelov, L.L. Doskolovich, A.K. Zvezdin, Phys. Rev. Lett. 98, 077401 (2007)

    Article  Google Scholar 

  48. V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, A.K. Zvezdin, M. Bayer, Nat. Nanotechnol. 6, 370 (2011)

    Article  Google Scholar 

  49. P.K. Jain, Y. Xiao, R. Walsworth, A.E. Cohen, Nano Lett. 9, 1644 (2009)

    Article  Google Scholar 

  50. G.X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, M. Takahashi, Appl. Phys. Lett. 96, 081915 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The author thank T. Kato, S. Iwata, M. Fujii, S. Hayashi, A. Terai, and N. Nabatova-Gabain for their valuable contribution in this work. The TEM observation by K. Akamatsu, EPMA study by K. Watanabe, and XRD measurement by D. Hashizume are acknowledged. The author is also grateful for fruitful discussions with K. Shinagawa, C. Mitsumata, and S. Ushioda. This work was supported by PRESTO, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Tomita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tomita, S. (2013). Spectroscopic Ellipsometry and Magneto-Optical Kerr Spectroscopy of Magnetic Garnet Thin Films Incorporating Plasmonic Nanoparticles. In: Losurdo, M., Hingerl, K. (eds) Ellipsometry at the Nanoscale. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33956-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33956-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33955-4

  • Online ISBN: 978-3-642-33956-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics