Skip to main content

Generalized Ellipsometry Characterization of Sculptured Thin Films Made by Glancing Angle Deposition

  • Chapter
  • First Online:

Abstract

Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films in the spectral range from 400 to 1700 nm. The analysis of metal slanted columnar thin films fabricated by glancing angle deposition reveals their monoclinic optical properties and their optical response can be modeled with a single homogeneous biaxial layer. This homogeneous biaxial layer approach is universally applicable to sculptured thin films and effective optical properties of the nanostructured thin films are attained. We provide a nomenclature and categorization for sculptured thin films based on their geometry and structure. A piecewise homogeneous biaxial layer approach is described, which allows for the determination of principal optical constants of chiral and achiral multi-fold and helical sculptured thin films. It is confirmed that such sculptured thin films have modular optical properties. This characteristic can be exploited to predict the optical response of sculptured thin films grown with arbitrary sequential substrate rotations. As an alternative model approach, an anisotropic effective medium approximation based on the Bruggeman formula is presented, which provides results comparable to the homogeneous biaxial layer approach and in addition provides the volume fraction parameters for slanted columnar thin films and their depolarization factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term chiral is derived from the Greek word for hand and is used to describe an object that is non-superposable on its mirror image.

  2. 2.

    New nomenclatures are introduced for different sculptured thin film geometries. See Table 10.1.

  3. 3.

    The abbreviation “s” comes from the German word senkrecht for perpendicular.

  4. 4.

    Unless used unambiguously as running index, the symbol “\(i\)” addresses the imaginary unit \(\sqrt{-1}\).

  5. 5.

    Considerations are given for a reflection set up, but hold for the complex-valued ratio of polarized plane wave components in the transmission arrangement as well.

  6. 6.

    In this notation the first index denotes the incident polarization mode, and the second index refers to the outgoing polarization mode.

  7. 7.

    The Stokes parameters have dimensions of intensities.

  8. 8.

    Sample, mirrors, rotators, optical devices within the light path, and any combinations thereof.

  9. 9.

    Note that \(\mathbf{A }^{-1} = \mathbf{A }^T\), where \(\{\cdot \}^T\) denotes the transpose of a matrix.

  10. 10.

    For purely dielectric material without internal or external magnetic fields, due to invariance upon time-reversal, there is no directional dependence along one axis (Onsager principle).

  11. 11.

    Note the uncommon assignment of unit cell angles. This notation is chosen here because it is equivalent to the definition of the ellipsometric analysis software WVASE32\(^\circledR \) [79] and is illustrated in Fig. 10.5.

  12. 12.

    Further details and analytical solutions for \(\mathbf{T }_{\mathrm{p }}\) can be found in the literature [68, 82].

  13. 13.

    At one wavelength, a symmetrical thin-film combination (periodically stratified medium) is equivalent to a single film, characterized by an equivalent index and equivalent thickness [87].

  14. 14.

    Very fast substrate rotation (\(<\)2 nm vertical growth per revolution) results in V-STFs, i.e., a screw degenerates to a straight column because the pitch is too small. Optical properties of V-STFs are not discussed in this chapter, however, the nanostructured film has uniaxial properties with the ordinary dielectric constant in the substrate interface and the extraordinary along the columns and normal to the substrate.

  15. 15.

    For nomenclature see Table 10.1.

  16. 16.

    For materials with monoclinic and triclinic symmetry \(\varepsilon _j(\omega )\) depend on the polarization functions \(\varrho _{a}, \varrho _{b}, \varrho _{c}\) and their non-Cartesian axes \(\mathbf{a }\), \(\mathbf{b }\), and \(\mathbf{c }\) as described in Sect. 10.3.4.

  17. 17.

    Mueller matrix elements of the fourth row cannot be resolved because the polarization state analyzer (2) does not comprise a rotating compensator [66, 67].

  18. 18.

    A DC offset calibration determines the detector noise level without source illumination.

  19. 19.

    Cobalt has a specified purity of 99.95 % and titanium 99.995 %. Supermalloy is composed of 79.8 % Ni, 15.1 % Fe, and 5.1 % Mo.

  20. 20.

    In case the sample under investigation does not exhibit non-reciprocal properties, Mueller matrix elements not shown in Fig. 10.13 can be obtained by symmetry operations: \(M_{21}(\varphi )=M_{12}(\varphi +\pi )\) and \(M_{3j}(\varphi )=-M_{j3}(\varphi +\pi )\) with \(j=1,2\). No inversion operation is necessary to convert \(M_{12}(\varphi )\) into \(M_{21}(\varphi +\pi )\) because these elements depend on the symmetric \(\cos \) function only whereas this is not true for all other elements. See for example (10.10). \(\pi \) denotes a sample rotation by \(180^\circ \).

  21. 21.

    Optical constants for bulk Co have been taken from Palik [106].

  22. 22.

    Bulk optical constants have been generated with an isotropic Bruggeman EMA (\(L^{\scriptscriptstyle \text{ D} \scriptstyle }_\mathrm{iso }=\frac{1}{3}\) for spherical inclusions) and optical constants for Ni, Fe, and Mo were taken from Palik [106]. For further details on Bruggeman EMA see also Sect. 10.3.6.

  23. 23.

    Here, data is compared that has been taken immediately after deposition and consequently no oxide layer was included within the AB-EMA.

References

  1. O. Toader, S. John, Science 292, 1133 (2001)

    Article  Google Scholar 

  2. J.P. Singh, D.-L. Li, D.-X. Ye, R.C. Picu, T.-M. Lu, G.-C. Wang, Appl. Phys. Lett. 84, 3657 (2004)

    Article  Google Scholar 

  3. M.T. Umlor, Appl. Phys. Lett. 87, 082505 (2005)

    Article  Google Scholar 

  4. D.J. Bell, J. Dong, Y. Sun, L. Zhang, B.J. Nelson, D. Grützmacher, in Proceedings of the 5th IEEE Conference on Nanotechnology (Nagoya, Japan, IEEE, 2005), p. 15

    Google Scholar 

  5. S.V. Kesapragada, P. Victor, O. Nalamasu, D. Gall, Nano Lett. 6, 854 (2006)

    Article  Google Scholar 

  6. J.J. Steele, A.C. van Popta, M.M. Hawkeye, J.C. Sit, M.J. Brett, Sens. Actuat. B-Chem. 120, 213 (2006)

    Article  Google Scholar 

  7. K.B. Rodenhausen, D. Schmidt, T. Kasputis, A.K. Pannier, E. Schubert, M. Schubert, Opt. Express 20, 5419 (2012)

    Article  Google Scholar 

  8. T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, C. Herzinger, J. Woollam, E. Schubert, M. Schubert, Mat. Res. Soc. Symp. Proc. 1409, CC13-31 (2012)

    Google Scholar 

  9. J.A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, Appl. Opt. 41, 3075 (2002)

    Article  Google Scholar 

  10. D. Poitras, J.A. Dobrowolski, Appl. Opt. 43, 1286 (2004)

    Article  Google Scholar 

  11. J.-Q. Xi, M. Ojha, J.L. Plawsky, W.N. Gill, J.K. Kim, E.F. Schubert, Appl. Phys. Lett. 87, 031111 (2005)

    Article  Google Scholar 

  12. J.-Q. Xi, M. Ojha, W. Cho, J.L. Plawsky, W.N. Gill, T. Gessmann, E.F. Schubert, Opt. Lett. 30, 1518 (2005)

    Article  Google Scholar 

  13. S.-T. Ho, S.L. McCall, R.E. Slusher, L.N. Pfeiffer, K.W. West, A.F.J. Levi, G.E. Blonder, J.L. Jewell, Appl. Phys. Lett. 57, 1387 (1990)

    Article  Google Scholar 

  14. R. Sharma, E.D. Haberer, C. Meier, E.L. Hu, S. Nakamura, Appl. Phys. Lett. 87, 051107 (2005)

    Article  Google Scholar 

  15. Q. Xu, V.R. Almeida, R.R. Panepucci, M. Lipson, Opt. Lett. 29, 1626 (2004)

    Article  Google Scholar 

  16. J.K. Kim, T. Gessmann, E.F. Schubert, J.-Q. Xi, H. Luo, J. Cho, C. Sone, Y. Park, Appl. Phys. Lett. 88, 013501 (2006)

    Article  Google Scholar 

  17. A. Jain, S. Rogojevic, S. Ponoth, N. Agarwal, I. Matthew, W.N. Gill, P. Persans, M. Tomozawa, J.L. Plawsky, E. Simonyi, Thin Solid Films 398–399, 513 (2001)

    Article  Google Scholar 

  18. G.K. Kiema, M.J. Colgan, M.J. Brett, Sol. Energ. Mat. Sol. C. 85, 321 (2005)

    Article  Google Scholar 

  19. J. Bouclé, P. Ravirajan, J. Nelson, J. Mater. Chem. 17, 3141 (2007)

    Article  Google Scholar 

  20. H.-Y. Yang, M.-F. Lee, C.-H. Huang, Y.-S. Lo, Y.-J. Chen, M.-S. Wong, Thin Solid Films 518, 1590 (2009)

    Article  Google Scholar 

  21. M.D. Fleischauer, J. Li, M.J. Brett, J. Electrochem. Soc. 156, A33 (2009)

    Article  Google Scholar 

  22. F. Tang, D.-L. Liu, D.-X. Ye, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, A. Vijayaraghavan, J. Appl. Phys. 93, 4194 (2003)

    Article  Google Scholar 

  23. F. Tang, D.-L. Liu, D.-X. Ye, T.-M. Lu, G.-C. Wang, J. Mag, Mag. Mat. 283, 65 (2004)

    Article  Google Scholar 

  24. D. Schmidt, T. Hofmann, C.M. Herzinger, E. Schubert, M. Schubert, Appl. Phys. Lett. 96, 091906 (2010)

    Article  Google Scholar 

  25. C.B.D. Schmidt, E. Schubert, M. Schubert, Mat. Res. Soc. Symp. Proc. 1408, BB15 (2012)

    Google Scholar 

  26. D. Schmidt, C. Müller, T. Hofmann, O. Inganäs, H. Arwin, E. Schubert, M. Schubert, Thin Solid Films 519, 2645 (2011)

    Article  Google Scholar 

  27. E. Schubert, in CAREER: Chiral Nanostructure Hybrid Materials for Applications in Terahertz Resonator and Magnetic Storage Devices, ECCS-0846329, National Science Foundation Award (2009–2014)

    Google Scholar 

  28. F.F. Choobineh, RII Project: Nanohybrid Materials & Algal Biology, EPS-1004094, National Science Foundation Award (2010–2015)

    Google Scholar 

  29. http://en.wikipedia.org/wiki/File:Helical_capsid.jpg. Accessed 27 Jan 2012

  30. T.D. Goddard, C.C. Huang, T.E. Ferrin, Structure 13, 473 (2005)

    Article  Google Scholar 

  31. A. Kundt, Ann. Phys. 263, 59 (1886)

    Article  Google Scholar 

  32. H. König, G. Helwig, Optik 6, 111 (1950)

    Google Scholar 

  33. A. Lakhtakia, R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, 2005)

    Book  Google Scholar 

  34. M.M. Hawkeye, M.J. Brett, J. Vac. Sci. Technol. A 25, 1317 (2007)

    Article  Google Scholar 

  35. N.O. Young, J. Kowal, Nature 183, 104 (1959)

    Article  Google Scholar 

  36. B. Goldstein, L. Pensak, J. Appl. Phys. 30, 155 (1959)

    Article  Google Scholar 

  37. J.M. Nieuwenhuizen, H.B. Haanstra, Philips Tech. Rev. 27, 87 (1966)

    Google Scholar 

  38. K. Robbie, L.J. Friedrich, S.K. Dew, T. Smy, M.J. Brett, J. Vac. Sci. Technol. A 13, 1032 (1995)

    Article  Google Scholar 

  39. K. Robbie, M.J. Brett, A. Lakhtakia, J. Vac. Sci. Technol. A 13, 2991 (1995)

    Article  Google Scholar 

  40. D. Schmidt, Generalized ellipsometry on sculptured thin films made by glancing angle deposition. Ph.D. thesis, University of Nebraska-Lincoln (2010)

    Google Scholar 

  41. K. Kaminska, T. Brown, G. Beydaghyan, K. Robbie, Appl. Opt. 42, 4212 (2003)

    Article  Google Scholar 

  42. B. Dick, M.J. Brett, T. Smy, J. Vac. Sci. Technol. B 21, 23 (2003)

    Article  Google Scholar 

  43. E. Schubert, F. Frost, H. Neumann, B. Rauschenbach, B. Fuhrmann, F. Heyroth, J. Rivory, E. Charron, B. Gallas, M. Schubert, Adv. Solid State Phys. 46, 309 (2007)

    Article  Google Scholar 

  44. F. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, T.-M. Lu, J. Vac. Sci. Technol. A 25, 160 (2007)

    Article  Google Scholar 

  45. D. Vick, Y.Y. Tsui, M.J. Brett, R. Fedosejevs, Thin Solid Films 350, 49 (1999)

    Article  Google Scholar 

  46. K. Robbie, J.C. Sit, M.J. Brett, J. Vac. Sci. Technol. B 16, 1115 (1998)

    Article  Google Scholar 

  47. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, C. Buzea, Rev. Sci. Instrum. 75, 1089 (2004)

    Article  Google Scholar 

  48. T. Karabacak, G.-C. Wang, T.-M. Lu, J. Appl. Phys. 94, 7723 (2003)

    Article  Google Scholar 

  49. T. Karabacak, G.-C. Wang, T.-M. Lu, J. Vac. Sci. Technol. A 22, 1778 (2004)

    Article  Google Scholar 

  50. M.O. Jensen, M.J. Brett, IEEE Trans. Nanotechnol. 4, 269 (2005)

    Article  Google Scholar 

  51. M. Malac, R.F. Egerton, M.J. Brett, B. Dick, J. Vac. Sci. Technol. B 17, 2671 (1999)

    Article  Google Scholar 

  52. B. Dick, M.J. Brett, T.J. Smy, M.R. Freeman, M. Malac, R.F. Egerton, J. Vac. Sci. Technol. A 18, 1838 (2000)

    Article  Google Scholar 

  53. E. Schubert, T. Höche, F. Frost, B. Rauschenbach, Appl. Phys. A-Mater. 81, 481 (2005)

    Article  Google Scholar 

  54. M.A. Summers, M.J. Brett, Nanotechnology 19, 415203 (2008)

    Article  Google Scholar 

  55. Y.P. Zhao, D.X. Ye, G.C. Wang, T.M. Lu, Nano Lett. 2, 351 (2002)

    Article  Google Scholar 

  56. R. Glass, M. Möller, J.P. Spatz, Nanotechnology 14, 1153 (2003)

    Article  Google Scholar 

  57. R. Glass, M. Arnold, E.A. Cavalcanti-Adam, J. Blümmel, C. Haferkemper, C. Dodd, J.P. Spatz, New J. Phys. 6, 101 (2004)

    Article  Google Scholar 

  58. C. Patzig, B. Rauschenbach, B. Fuhrmann, H.S. Leipner, J. Appl. Phys. 103, 024313 (2008)

    Article  Google Scholar 

  59. C. Patzig, B. Rauschenbach, B. Fuhrmann, H.S. Leipner, J. Nanosci. Nanotechnol. 9, 1985 (2009)

    Article  Google Scholar 

  60. L. Chi (ed.), Nanostructured Surfaces. Nanotechnology, vol. 8 (Wiley-VCH, Weinheim, 2010)

    Google Scholar 

  61. A. Dolatshahi-Pirouz, T. Jensen, T. Vorup-Jensen, R. Bech, J. Chevallier, F. Besenbacher, M. Foss, D.S. Sutherland, Adv. Eng. Mater. 12, 899 (2010)

    Article  Google Scholar 

  62. B.N. Mbenkum, On the anomalies in gold nanoparticles prepared by micelle nanolithography and their impact on one-dimensional material synthesis role of substrate, size effects and impurity. Ph.D. thesis, Ruperto-Carola University of Heidelberg (2007)

    Google Scholar 

  63. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland Publ. Co., Amsterdam, 1984)

    Google Scholar 

  64. D. Kliger, J. Lewis, C. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, New York, 1990)

    Google Scholar 

  65. H.G. Tompkins, A User’s Guide to Ellipsometry (Academic Press, New York, 1993)

    Google Scholar 

  66. H.G. Tompkins, E.A. Irene (eds.), Handbook of Ellipsometry (William Andrew Publishing, Norwich, 2005)

    Google Scholar 

  67. H. Fujiwara, Spectroscopic Elliposmetry: Principles and Applications (Wiley, Chichester, 2007)

    Google Scholar 

  68. M. Schubert, in Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons, and Polaritons. Springer Tracts in Modern Physics, vol. 209 (Springer, Berlin, 2004)

    Google Scholar 

  69. M. Schubert, Handbook of Ellipsometry, ed. by E.A. Irene, H.G. Tompkins. (William Andrew Publishing, Norwich, 2005)

    Google Scholar 

  70. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988)

    Google Scholar 

  71. M. Schubert, Thin Solid Films 313–314, 323 (1998)

    Article  Google Scholar 

  72. A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie, Berlin, 1990)

    Google Scholar 

  73. D. Goldstein, Polarized Light, 2nd edn. (Marcel Dekker, New York, 2003)

    Book  Google Scholar 

  74. G.E. Jellison, F.A. Modine, Appl. Opt. 36, 8184 (1998)

    Article  Google Scholar 

  75. G.E. Jellison, F.A. Modine, Appl. Opt. 36, 8190 (1998)

    Article  Google Scholar 

  76. G.E. Jellison, Handbook of Ellipsometry, ed. by E.A. Irene, H.G. Tompkins. (William Andrew Publishing, Norwich, 2005)

    Google Scholar 

  77. W.S. Weiglhofer, in Introduction to Complex Mediums for Optics and Electromagnetics, ed. by W.S. Weiglhofer, A. Lakhtakia. (SPIE Press, Bellingham, 2003)

    Google Scholar 

  78. M. de Graef, M.E. McHenry, Structure of Materials: An Introduction to Crystallogrpahy, Diffraction, and Symmetry (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  79. J.A. Woollam Co., Inc., Guide to Using WVASE32®: Spectroscopic Ellipsometry Data Acquisition and Analysis Software (2008)

    Google Scholar 

  80. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  81. D.W. Berreman, J. Opt. Soc. Am. 62, 502 (1972)

    Article  Google Scholar 

  82. M. Schubert, Phys. Rev. B 53, 4265 (1996)

    Article  Google Scholar 

  83. M. Schubert, B. Rheinländer, C. Cramer, H. Schmiedel, J.A. Woollam, C.M. Herzinger, B. Johs, J. Opt. Soc. Am. A 13, 1930 (1996)

    Article  Google Scholar 

  84. M. Schubert, C.M. Herzinger, Phys. Status Solidi (a) 188, 1563 (2001)

    Article  Google Scholar 

  85. M.S. Cohen, J. Appl. Phys. 32, S87 (1961)

    Article  Google Scholar 

  86. I.J. Hodgkinson, Q.H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997)

    Book  Google Scholar 

  87. L.I. Epstein, J. Opt. Soc. Am. 42, 806 (1952)

    Article  Google Scholar 

  88. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, M. Schubert, Appl. Phys. Lett. 94, 011914 (2009)

    Article  Google Scholar 

  89. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, M. Schubert, Opt. Lett. 34, 992 (2009)

    Article  Google Scholar 

  90. D. Schmidt, E. Schubert, M. Schubert, Appl. Phys. Lett. 100, 011912 (2012)

    Article  Google Scholar 

  91. D.A.G. Bruggeman, Ann. Physik (Leipzig) 24, 636 (1953)

    Google Scholar 

  92. D. Polder, J.H. van Santen, Physica 12, 257 (1946)

    Google Scholar 

  93. C.G. Granquist, O. Hunderi, Phys. Rev. B 16, 3513 (1977)

    Google Scholar 

  94. G.B. Smith, Opt. Commun. 71, 279 (1989)

    Google Scholar 

  95. C.G. Granqvist, D.L. Bellac, G.A. Niklasson, Renew. Energy 8, 530 (1996)

    Google Scholar 

  96. A. Shivola, in Electromagnetic Mixing Formulas and Applications. Electromagnetic Waves, vol. 47. (The Institution of Electrical Engineers, London, 1999)

    Google Scholar 

  97. O. Wiener, Abh. Sächs. Ges. Akad. Wiss., Math.-Phys. Kl. 32, 509 (1912)

    Google Scholar 

  98. W.L. Bragg, A.B. Pippard, Act. Cryst. 6, 865 (1953)

    Article  Google Scholar 

  99. H.K. Pulker, E. Jung, Thin Solid Films 7, 57 (1971)

    Article  Google Scholar 

  100. D.E. Aspnes, Thin Solid Films 89, 249 (1982)

    Article  Google Scholar 

  101. N.J. Podraza, C. Chen, I. An, G.M. Ferreira, P.I. Rovira, R. Messier, R.W. Collins, Thin Solid Films 455–456, 571 (2004)

    Article  Google Scholar 

  102. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1988)

    MATH  Google Scholar 

  103. C.M. Herzinger, P.G. Snyder, B. Johs, J.A. Woollam, J. Appl. Phys. 77, 1715 (1995)

    Article  Google Scholar 

  104. C.M. Herzinger, H. Yao, P.G. Snyder, F.G. Celii, Y.-C. Kao, B. Johs, J.A. Woollam, J. Appl. Phys. 77, 4677 (1995)

    Article  Google Scholar 

  105. B. Johs, Thin Solid Films 234, 395 (1993)

    Article  Google Scholar 

  106. E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, Boston, 1991)

    Google Scholar 

  107. D.W. Lynch, C.G. Olson, J.H. Weaver, Phys. Rev. B 11, 3617 (1975)

    Article  Google Scholar 

  108. G. Beydaghyan, C. Buzea, Y. Chi, C. Elliott, K. Robbie, Appl. Phys. Lett. 87, 153103 (2005)

    Article  Google Scholar 

  109. G.W. Mbise, G.A. Niklasson, C.G. Granqvist, S. Palmer, J. Appl. Phys. 80, 5361 (1996)

    Article  Google Scholar 

  110. G.W. Mbise, D.L. Bellac, G.A. Niklasson, C.G. Granqvist, J. Phys. D: Appl. Phys. 30, 2103 (1997)

    Article  Google Scholar 

  111. G. Hass, A.P. Bradford, J. Opt. Soc. Am. 47, 125 (1957)

    Article  Google Scholar 

  112. M. Knez, K. Nielsch, L. Niinistö, Adv. Mater. 19, 3425 (2007)

    Article  Google Scholar 

  113. O. Albrecht, R. Zierold, C. Patzig, J. Bachmann, C. Sturm, B. Rheinländer, M. Grundmann, D. Görlitz, B. Rauschenbach, K. Nielsch, Phys. Status Solidi B 247, 1365 (2010)

    Article  Google Scholar 

  114. O. Albrecht, R. Zierold, S. Allende, J. Escrig, C. Patzig, B. Rauschenbach, K. Nielsch, D. Görlitz, J. Appl. Phys. 109, 093910 (2011)

    Article  Google Scholar 

  115. C.-C. Wang, C.-C. Kei, Y.-W. Yu, T.-P. Perng, Nano Lett. 7, 1566 (2007)

    Article  Google Scholar 

  116. J.J. Steele, M. Taschuk, M.J. Brett, IEEE Sens. J. 8, 1422 (2008)

    Article  Google Scholar 

  117. M.M. Hawkeye, K.M. Krause, M.J. Brett, Proc. SPIE 7356, 73560G (2009)

    Article  Google Scholar 

  118. D. Schmidt, E. Schubert, M. Schubert, Mat. Res. Soc. Symp. Proc. 1409, CC13 (2012)

    Google Scholar 

  119. D.O. Smith, M.S. Cohen, G.P. Weiss, J. Appl. Phys. 31, 1755 (1960)

    Article  Google Scholar 

  120. R.J. King, S.P. Talim, Opt. Acta 28, 1107 (1981)

    Article  Google Scholar 

  121. I. Hodgkinson, F. Horowitz, H.A. Macleod, M. Sikkens, J.J. Wharton, J. Opt. Soc. Am. A 2, 1693 (1985)

    Article  Google Scholar 

  122. I. Hodgkinson, Q.H. Wu, J. Hazel, Appl. Opt. 37, 2653 (1998)

    Article  Google Scholar 

  123. I. Hodgkinson, Q.H. Wu, Appl. Opt. 38, 3621 (1999)

    Article  Google Scholar 

  124. R.A. May, D.W. Flaherty, C.B. Mullins, K.J. Stevenson, J. Phys. Chem. Lett. 1, 1264 (2010)

    Article  Google Scholar 

  125. K.Y. Bang, E.H. Choi, J.S. Kyung, I. An, S.-H. Woo, Y.J. Park, C.K. Hwangbo, J. Korean Phys. Soc. 46, 137 (2005)

    Google Scholar 

  126. G. Beydaghyan, K. Kaminska, T. Brown, K. Robbie, Appl. Opt. 43, 5343 (2004)

    Article  Google Scholar 

  127. K. Kaminska, A. Amassian, L. Martinu, K. Robbie, J. Appl. Phys. 97, 013511 (2005)

    Article  Google Scholar 

  128. J. Gospodyn, J.C. Sit, Opt. Mater. 29, 318 (2006)

    Article  Google Scholar 

  129. S.-H. Hsu, E.-S. Liu, Y.-C. Chang, J.N. Hilfiker, Y.D. Kim, T.J. Kim, C.-J. Lin, G.-R. Lin, Phys. Status Solidi (a) 205, 876 (2008)

    Article  Google Scholar 

  130. N.G. Wakefield, J.B. Sorge, M.T. Taschuk, L.W. Bezuidenhout, M.J. Brett, J.C. Sit, J. Opt. Soc. Am. A 28, 1830 (2011)

    Article  Google Scholar 

  131. I.S. Nerbø, S.L. Roy, M. Foldyna, M. Kildemo, E. Søndergård, J. Appl. Phys. 108, 014307 (2010)

    Article  Google Scholar 

  132. M. Mansour, A.-S. Keita, B. Gallas, J. Rivory, A. Besnard, N. Martin, Opt. Mater. 32, 1146 (2010)

    Article  Google Scholar 

  133. T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C.M. Herzinger, J.A. Woollam, M. Schubert, E. Schubert, Appl. Phys. Lett. 99, 081903 (2011)

    Google Scholar 

  134. T. Mackay and A. Lakhtakia, J. Nanophoton. 6, 069501 (2012)

    Google Scholar 

  135. D. Stroud, Phys. Rev. B 12, 3368 (1975)

    Google Scholar 

  136. T. Motohiro, Y. Yaga, Appl. Opt. 28, 2466 (1989)

    Article  Google Scholar 

  137. J.C.M. Garnett, Phil. Trans. Soc. Lond. A 203, 385 (1904)

    Article  MATH  Google Scholar 

  138. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Science 306, 1351 (2004)

    Article  Google Scholar 

  139. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, H. Giessen, Opt. Express 14, 8827 (2006)

    Article  Google Scholar 

  140. C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, F. Lederer, Opt. Express 15, 8871 (2007)

    Article  Google Scholar 

  141. R. Abdeddaïm, G. Guida, A. Priou, B. Gallas, J. Rivory, Appl. Phys. Lett. 94, 081907 (2009)

    Article  Google Scholar 

  142. B. Gallas, N. Guth, J. Rivory, H. Arwin, R. Magnusson, G. Guida, J. Yang, K. Robbie, Thin Solid Films 519, 2650 (2011)

    Article  Google Scholar 

  143. M.O. Jensen, M.J. Brett, Opt. Express 13, 3348 (2005)

    Article  Google Scholar 

  144. I. Šolc, J. Opt. Soc. Am. 55, 621 (1965)

    Article  Google Scholar 

  145. A. Lakhtakia, W. Weiglhofer, Proc. R. Soc. Lond. A 448, 419 (1995)

    Article  MATH  Google Scholar 

  146. F. Chiadini, A. Lakhtakia, Microw. Opt. Technol. Lett. 42, 135 (2004)

    Article  Google Scholar 

  147. M. Schubert, T. Hofmann, C.M. Herzinger, J. Opt. Soc. Am. A 20, 347 (2003)

    Article  Google Scholar 

  148. P.I. Rovira, R.A. Yarussi, R.W. Collins, R. Messier, V.C. Venugopal, A. Lakhtakia, K. Robbie, M.J. Brett, Appl. Phys. Lett. 71, 1180 (1997)

    Article  Google Scholar 

  149. K. Robbie, D.J. Broer, M.J. Brett, Nature 399, 764 (1999)

    Article  Google Scholar 

  150. A.C. van Popta, J.C. Sit, M.J. Brett, Appl. Opt. 43, 3632 (2004)

    Article  Google Scholar 

  151. J.B. Sorge, A.C. van Popta, J.C. Sit, M.J. Brett, Opt. Express 14, 10550 (2006)

    Article  Google Scholar 

  152. K.M. Krause, M.J. Brett, Adv. Funct. Mater. 18, 3111 (2008)

    Article  Google Scholar 

  153. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Science 325, 1513 (2009)

    Article  Google Scholar 

  154. Y. Zong, Y.C. Shin, C.M. Kim, B.G. Lee, E.H. Kim, Y.J. Park, K.M.A. Sobahan, C.K. Hwangbo, Y.P. Lee, T.G. Kim, J. Mater. Res. 23, 2500 (2008)

    Article  Google Scholar 

  155. X. Chen, K. Jiang, Nanotechnology 19, 215305 (2008)

    Article  Google Scholar 

  156. D.W. Flaherty, R.A. May, S.P. Berglund, K.J. Stevenson, C.B. Mullins, Chem. Mater. 22, 319 (2010)

    Article  Google Scholar 

  157. N.A. Luechinger, S. Loher, E.K. Athanassiou, R.N. Grass, W.J. Stark, Langmuir 23, 3473 (2005)

    Article  Google Scholar 

  158. G. Mertens, R.B. Wehrspohn, H.-S. Kitzerowa, S. Matthias, C. Jamois, U. Gösele, Appl. Phys. Lett. 87, 241108 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from and fruitful discussion with Tino Hofmann, Ralf Skomski, Han Chen, Xingzhong Li, Natale Ianno, Sy-Hwang Liou, Keith Rodenhausen, Stefan Schöche, Philipp Kühne, Ann Kjerstad, Alexander Boosalis, Eric Montgomery, Derek Sekora, (University of Nebraska-Lincoln, U.S.A.), Andrew Sarangan (University of Dayton, U.S.A), Benjamin Booso (SAIC, U.S.A.), Craig Herzinger, John Woollam (J.A. Woollam Company, U.S.A.), Mario Saenger (InvenLux, U.S.A.), Ravi Billa (InVisage, U.S.A.), Venkata Voora (Globalfoundries, U.S.A.), Olle Inganäs, Hans Arwin (Linköping University, Sweden), Christian Müller (Chalmers University of Technology, Sweden), Brian Bell (University of South Florida, U.S.A), Beri Mbenkum (CSIC, Spain), and Thomas Oates (ISAS, Germany). The research was funded in part by the National Science Foundation, the J.A. Woollam Foundation, and the University of Nebraska-Lincoln.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, D., Schubert, E., Schubert, M. (2013). Generalized Ellipsometry Characterization of Sculptured Thin Films Made by Glancing Angle Deposition. In: Losurdo, M., Hingerl, K. (eds) Ellipsometry at the Nanoscale. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33956-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33956-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33955-4

  • Online ISBN: 978-3-642-33956-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics