Skip to main content

Emergent Swarm Morphology Control of Wireless Networked Mobile Robots

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We describe a new class of decentralised control algorithms that link local wireless connectivity to low-level robot motion control in order to maintain both swarm aggregation and connectivity, which we term “coherence”, in unbounded space. We investigate the potential of first-order and second-order connectivity information to maintain swarm coherence. For the second-order algorithm we show that a single \(\beta \) parameter—the number of shared neighbours that each robot tries to maintain—acts as an “adhesion” parameter. Control of \(\beta \) alone affects the global area coverage of the swarm. We then add a simple beacon sensor to each robot and show that, by creating a \(\beta \) differential between illuminated and occluded robots, the swarm displays emergent global taxis towards the beacon; it also displays interesting global obstacle avoidance properties. The chapter then extends the idea of \(\beta \) heterogeneity within the swarm to demonstrate variants of the algorithm that exhibit emergent concentric or linear segregation of subgroups within the swarm, or—in the presence of an external beacon—the formation of horizontal or vertical axial configurations. This emergent swarm morphology control is remarkable because apparently simple variations generate very different global properties. These emergent properties are interesting both because they appear to have parallels in biology, and because they could have value to a wide range of future applications in swarm robotics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agassounon, W., Martinoli, A., Easton, K.: Macroscopic modeling of aggregation experiments using embodied agents in teams of constant and time-varying sizes. Auton. Robots 17(2–3), 163–192 (2004)

    Article  Google Scholar 

  2. Artaud, G., Plancke, P., Magness, R., Durrant, D., Plummer, C.: IEEE 802.15.4: Wireless transducer networks. In: Datasystems in Aerospace, DASIA’04, Nice (2004)

    Google Scholar 

  3. Balch, T., Arkin, R.: Communication in reactive multiagent robotic systems. Auton. Robots 1, 1–25 (1994)

    Article  Google Scholar 

  4. Balch, T., Arkin, R.: Behaviour-based formation control for multi-robot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  5. Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations. In: Proceedings of the International Conference on Robotics and Automation ICRA’00, vol. 1, pp. 73–80 (2000)

    Google Scholar 

  6. Beckers, R., Holland, O., Deneubourg, J.L.: From local actions to global tasks: stigmergy and collective robotics. In: Press, M. (ed.) Artificial Life IV, pp. 181–189. MIT Press, Cambridge (1994)

    Google Scholar 

  7. Billard, A., Ijspeert, A., Martinoli, A.: Adaptive exploration of a frequently changing environment by a group of communicating robots. In: Floreano, D. et al. (eds.) Advances in Artfificial, Life, ECAL’99, vol. 1674, pp. 596–605. Springer Verlag, Berlin (1999)

    Google Scholar 

  8. Bjerknes, J., Winfield, A.: On fault-tolerance and scalability of swarm robotic systems. In: Proceedings of the 10th International Symposium on Distributed Autonomous Robotic (DARS 2010), Springer Tracts in Advanced Robotics, vol. 83, pp. 431–444 (2013)

    Google Scholar 

  9. Bonabeau, E., Dorigo, M., Théraulaz, G.: Swarm Intelligence—From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  10. Braitenberg, V.: Vehicles—Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)

    Google Scholar 

  11. Brooks, R.: A robust layered control system for a mobile robot. J. Robot. Autom. 2, 14–23 (1986)

    Article  MathSciNet  Google Scholar 

  12. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W. (eds.) Swarm Robotics Workshop: State-of-the-art Survey. Lecture Notes in Computer Science, vol. 3342, pp. 10–20. Springer, Berlin (2005)

    Google Scholar 

  13. Dorigo, M., Tuci, E., Groß, T., Trianni, V., Labella, T., Nouyan, S., Ampatzis, C.: The SWARM-BOTS project. In: Şahin, E., Spears, W. (eds.) Swarm Robotics Workshop: State-of-the-art Survey. Lecture Notes in Computer Science, vol. 3342, pp. 31–44. Springer, Berlin (2005)

    Google Scholar 

  14. Hayes, A., Martinoli, A., Goodman, R.: Comparing distributed exploration strategies with simulated and real robots. In: Distributed Autonomous Robotic Systems, vol. IV, pp. 261–270 (2000)

    Google Scholar 

  15. Hemelrijk, C.K., Kunz, H.: Density distribution and size sorting in fish schools: an individual-based model. Behav. Ecol. 16(1), 178–187 (2005)

    Article  Google Scholar 

  16. Hogeweg, P.: Computing an organism: on the interface between informatic and dynamic processes. BioSystems 64, 97–109 (2002)

    Article  Google Scholar 

  17. Kotay, K., Rus, D.: Locomotion versatility through self-reconfiguration. J. Robot. Auton. Syst. 26, 217–232 (1999)

    Article  Google Scholar 

  18. Krieger, M., Billeter, J.B.: The call of duty: self-organised task allocation in a population of up to twelve mobile robots. J. Robot. Auton. Syst. 30, 65–84 (2000)

    Article  Google Scholar 

  19. Mataric, M.: Designing emergent behaviours: from local interactions to collective intelligence. In: From Animals To Animats, pp. 432–441 (1992)

    Google Scholar 

  20. Melhuish, C., Holland, O., Hoddell, S.: Collective sorting and segregation in robots with minimal sensing. In: From Animals to Animat, vol. 5, pp. 465–470. MIT Press, Cambridge (1998)

    Google Scholar 

  21. Mondada, F., Bonani, M., Magnenat, S., Guignard, A., Floreano, D.: Physical connections and cooperation in swarm robotics. In: Groen, P. et al. (eds.) Proceedings of the International Conference on Intelligent and Autonomous Systems. IOS Press, Amsterdam (2004)

    Google Scholar 

  22. Nembrini, J.: Minimalist coherent swarming of wireless networked autonomous mobile robots. Ph.D. Thesis, University of the West of England, Bristol, UK, (2005). http://swis.epfl.ch/people/julien

  23. Nishimura, S., Sasai, M.: Inertia of ameobic cell locomation as an emergent collective property of the cellular dynamics. Phys. Rev. E 71, 010902 (2005)

    Google Scholar 

  24. Nusslein-Volhard, C.: Gradients that organise embryo-development. Scient. Am. 275(2), 54–61 (1996)

    Google Scholar 

  25. Poduri, S., Sukhatme, G.: Constrained coverage for mobile sensor networks. In: IEEE International Conference on Robotics and Automation, pp. 165–172 (2004)

    Google Scholar 

  26. Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. Comput. Graph. 21, 25–34 (1987)

    Article  Google Scholar 

  27. Savill, N., Hogeweg, P.: Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol. 184, 229–235 (1997)

    Article  Google Scholar 

  28. Shimizu, M., Ishiguro, A., Kawakatsu, T.: Slimebot: a modular robot that exploits emergent phenomena. In: IEEE International Conference on Robotics and Automation, pp. 2982–2987, Barcelona, Spain (2005)

    Google Scholar 

  29. Støy, K.: Developing a solution to the foraging task using multiple robots and local comunication. In: IEEE CIRA2001 (2001). http://www.mip.sdu.dk/kaspers/publications.html

  30. Støy, K.: Using situated communication in distributed autonomous mobile robotics. In: 7th Scandinavian Conference on AI, pp. 44–52 (2001). http://citeseer.nj.nec.com/425017.html

  31. Støy, K.: Controlling self-reconfiguration using cellular automata and gradients. In: Groen, P. et al. (eds.) Proceedings of the International Conference on Intelligent and Autonomous Systems, IAS-8, pp. 693–702. IOS Press, Amsterdam (2004)

    Google Scholar 

  32. Takahashi, N., Yu, W., Yokoi, H., Kakazu, Y.: Amoeba like multi-cell robot control system. In: Groen, P. et al. (eds.) Proceedings of the International Conference on Intelligent and Autonomous Systems, IAS-8. IOS Press, Amsterdam (2004)

    Google Scholar 

  33. Weßnitzer, J., Adamatzky, A., Melhuish, C.: Towards self-organising structure formations: a decentralised approach. In: Proceedings of ECAL 2001, pp. 573–581. Springer, London (2001)

    Google Scholar 

  34. Winfield, A.: Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots. In: Distributed Autonomous Robotic Systems, vol. IV, pp. 273–282 (2000)

    Google Scholar 

  35. Winfield, A., Harper, C., Nembrini, J.: Towards dependable swarms and a new discipline of swarm engineering. In: Şahin, E., Spears, W. (eds.) Swarm Robotics Workshop: State-of-the-art Survey, vol. 3342, pp. 126–142. Springer, Berlin (2005)

    Google Scholar 

  36. Winfield, A., Holland, O.: The application of wireless local area network technology to the control of mobile robots. Microprocess. Microsyst. 23, 597–607 (2000)

    Article  Google Scholar 

  37. Winfield, A., Liu, W., Nembrini, J., Martinoli, A.: Modelling a wireless connected swarm of mobile robots. Swarm Intell. 2(2–4), 241–266 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Higher Education Funding Council for England (HEFCE) Collaborative Research (CollR) funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan F. T. Winfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winfield, A.F., Nembrini, J. (2012). Emergent Swarm Morphology Control of Wireless Networked Mobile Robots. In: Doursat, R., Sayama, H., Michel, O. (eds) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33902-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33901-1

  • Online ISBN: 978-3-642-33902-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics