Skip to main content

Ectomycorrhizal Helper Bacteria: The Third Partner in the Symbiosis

  • Chapter
  • First Online:
Edible Ectomycorrhizal Mushrooms

Part of the book series: Soil Biology ((SOILBIOL,volume 34))

Abstract

In natural conditions, mycorrhizal fungi are surrounded by complex microbial communities, which may trigger various responses, from enhancement of the establishment of mycorrhizal symbiosis to mycelial growth inhibition or cell death. The symbiosis between mycorrhizal soil fungi and higher plants takes advantage of active collaboration with specific helper bacteria. Thus, a symbiosis so far thought of involving two components could be the result of the interaction among at least three different partners. This chapter focuses on the relationship between edible ectomycorrhizal mushrooms and soil bacteria, in particular nitrogen-fixing bacteria associated with Tuber species. The ability of these bacteria to modify nutrient availability during the fructification phase is very important to truffle development. This chapter will also discuss perspectives on the beneficial use of ectomycorrhizal symbiosis with nitrogen-fixing bacteria to develop predictive models that could be used to improve the mycorrhization processes with the further aim of obtaining plants infected with Tuber magnatum Pico, the most economically important truffle species that remains difficult to cultivate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams AS, Currie CR, Cardoza Y, Klepzig KD, Raffa KF (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J For Res 39:1133–1147. doi:10.1139/X09-034

    Article  CAS  Google Scholar 

  • Agarwal AK, Keister DL (1983) Physiology of ex planta nitrogenase activity in Rhizobium japonicum. Appl Environ Microbiol 45:1592–1601

    PubMed  CAS  Google Scholar 

  • Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414. doi:10.1146/annurev.phyto.42.040103.110731

    Article  PubMed  CAS  Google Scholar 

  • Assigbetse K, Gueye M, Thioulouse J, Duponnois R (2005) Soil bacterial diversity responses to root colonization by an ectomycorrhizal fungus are not root-growth-dependent. Microb Ecol 50:350–359. doi:10.1007/s00248-004-0229-x

    Article  PubMed  Google Scholar 

  • Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C, Zambonelli A, Stocchi V (2005a) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247:23–35. doi:10.1016/j.femsle.2005.04.027

    Article  PubMed  CAS  Google Scholar 

  • Barbieri E, Gioacchini AM, Zambonelli A, Bertini L, Stocchi V (2005b) Determination of microbial volatile organic compounds from Staphylococcus pasteuri against Tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 19:3411–3415. doi:10.1002/rcm.2209

    Article  PubMed  CAS  Google Scholar 

  • Barbieri E, Guidi C, Bertaux J, Frey-Klett P, Garbaye J, Ceccaroli P, Saltarelli R, Zambonelli A, Stocchi V (2007) Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ Microbiol Rep 9:2234–2246. doi:10.1111/j.1462-2920.2007.01338.x

    Article  Google Scholar 

  • Barbieri E, Ceccaroli P, Saltarelli R, Guidi C, Potenza L, Basaglia M, Fontana F, Baldan E, Casella S, Ryahi O et al (2010) New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biol 114:936–942. doi:10.1016/j.funbio.2010.09.001

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1997) In: Gange AC, Brown VK (eds) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. Blackwell Science, Cambridge

    Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351. doi:10.1023/A:1020588701325

    Article  PubMed  CAS  Google Scholar 

  • Barriuso J, Ramos Solano B, Lucas JA, Lobo AP, García-Villaraco A, Gutiérrez Mañero FJ (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions strategies and techniques to promote plant growth. Wiley, Weinheim

    Google Scholar 

  • Barry D, Staunton S, Callot G (1994) Mode of the absorption of water and nutrients by ascocarps of Tuber Melanosporum and Tuber aestivum—a radioactive-tracer technique. Can J Bot 72:317–322. doi:10.1139/b94-041

    Article  Google Scholar 

  • Bertini L, Rossi I, Zambonelli A, Amicucci A, Sacchi A, Cecchini M, Gregori G, Stocchi V (2006) Molecular identification of Tuber magnatum ectomycorrhizae in the field. Microbiol Res 161:59–64. doi:10.1016/j.micres.2005.06.003

    Article  PubMed  CAS  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur J Histochem 45:39–49

    PubMed  CAS  Google Scholar 

  • Bohlool BB, Schidt EL (1974) Lectins: a possible basis for specificity in the Rhizobium-legume root module symbiosis. Science 188:269–271. doi:10.1126/science.185.4147.269

    Article  Google Scholar 

  • Bonfante P (2001) At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. In: Hock B (ed) Mycota, IX Fungal associations. Springer, Berlin

    Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383. doi:10.1146/annurev.micro.091208.073504

    Article  PubMed  CAS  Google Scholar 

  • Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11:119–126

    Article  Google Scholar 

  • Brooks DD, Chan R, Starks ER, Grayston SJ, Jones MD (2011) Ectomycorrhizal hyphae structure components of the soil bacterial community for decreased phosphatase production. FEMS Microbiol Ecol 76:245–255. doi:10.1111/j.1574-6941.2011.01060.x

    Article  PubMed  CAS  Google Scholar 

  • Burke DJ, Dunham SM, Kretzer AM (2008) Molecular analysis of bacterial communities associated with the roots of Douglas fir (Pseudotsuga menziesii) colonized by different ectomycorrhizal fungi. FEMS Microbiol Ecol 65:299–309. doi:10.1111/j.1574-6941.2008.00491.x

    Article  PubMed  CAS  Google Scholar 

  • Casella S, Shapleigh JP, Lupi F, Payne WJ (1988) Nitrite reduction in bacteroids of Rhizobiumhedysari” strain HCNT 1. Arch Microbiol 149:384–388

    Article  CAS  Google Scholar 

  • Cerigini E, Palma F, Barbieri E, Buffalini M, Stocchi V (2008) The Tuber borchii fruiting body-specific protein TBF-1, a novel lectin which interacts with associated Rhizobium species. FEMS Microbiol Lett 284:197–203. doi:10.1111/j.1574-6968.2008.01197.x

    Article  PubMed  CAS  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100:14555–14561. doi:10.1073/pnas.1934677100

    Article  PubMed  CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608. doi:10.1128/Aem.69.9.5603-5608.2003

    Article  PubMed  CAS  Google Scholar 

  • Cotter PA, DiRita VJ (2000) Bacterial virulence gene regulation: an evolutionary perspective. Annu Rev Microbiol 54:519–565. doi:10.1146/annurev.micro.54.1.519

    Article  PubMed  CAS  Google Scholar 

  • Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 158:39–49. doi:10.1046/j.1469-8137.2003.00725.x

    Article  CAS  Google Scholar 

  • Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468. doi:10.1074/jbc.M106655200

    Article  PubMed  CAS  Google Scholar 

  • De Bellis R, Agostini D, Piccoli G, Vallorani L, Potenza L, Polidori E, Sisti D, Amoresano A, Pucci P, Arpaia G et al (1998) The tbf-1 gene from the white truffle Tuber borchii codes for a structural cell wall protein specifically expressed in fruit body. Fungal Genet Biol 25:87–99. doi:S1087184598910921

    Article  PubMed  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811. doi:10.1016/j.femsre.2004.11.005

    Article  PubMed  Google Scholar 

  • Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat JC, Sarniguet A, Garbaye J, Martin F, Frey-Klett P (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175:743–755. doi:10.1111/j.1469-8137.2007.02148.x

    Article  PubMed  CAS  Google Scholar 

  • Deveau A, Brule C, Palin B, Champmartin D, Rubini P, Garbaye J, Sarniguet A, Frey-Klett P (2010) Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ Microbiol Rep 2:560–568. doi:10.1111/j.1758-2229.2010.00145.x

    Article  CAS  Google Scholar 

  • Duponnois R, Garbaye J (1992) Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Can J Bot 68:2148–2152

    Article  Google Scholar 

  • Founoune H, Duponnois R, Ba AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002) Mycorrhiza helper bacteria stimulated ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol 153:81–89. doi:10.1046/j.0028-646X.2001.00284.x

    Article  Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380. doi:3492

    Article  PubMed  CAS  Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401. doi:10.1038/387394a0

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett P, Garbaye J (2005) Mycorrhiza helper bacteria: a promising model for the genomic analysis of fungal-bacterial interactions. New Phytol 168:4–8. doi:10.1111/j.1469-8137.2005.01553.x

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328. doi:10.1111/j.1469-8137.2004.01212.x

    Article  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36. doi:10.1111/j.1469-8137.2007.02191.x

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609. doi:10.1128/MMBR.00020-11

    Article  PubMed  CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria—a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Garbaye J, Bowen GD (1989) Stimulation of ectomycorrhizal infection of Pinus radiata by some microorganisms associated with the mantle of ectomycorrhizas. New Phytol 112:383–388

    Article  Google Scholar 

  • Garbaye J, Duponnois R (1992) Specificity and function of mycorrhization helper bacteria (MHB) associated with the Pseudotsuga menziesii-Laccaria laccata symbiosis. Symbiosis 14:335–344

    Google Scholar 

  • Gazzanelli G, Malatesta M, Pianetti A, Baffone W, Stocchi V, Citterio B (1999) Bacteria associated to fruit bodies of the ecto-mycorrhizal fungus Tuber borchii Vittad. Symbiosis 26:211–222. doi:10.1023/A:1020949531639

    Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56. doi:10.1016/S0929-1393(96)00126-6

    Article  Google Scholar 

  • Hall IR, Brown G, Zambonelli A (2007) Taming the truffle. The history, lore, and science of the ultimate mushroom. Timber, Portland, OR

    Google Scholar 

  • Hamblin J, Kent SP (1973) Possible role of phytohaemagglutinin in Phaseolus vulgaris L. Nat New Biol 245:28–30

    Article  PubMed  CAS  Google Scholar 

  • Harley JL, Smith SE (1993) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Hirsch AM (1999) Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr Opin Plant Biol 2:320–326. doi:10.1016/S1369-5266(99)80056-9

    Article  PubMed  CAS  Google Scholar 

  • Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ERB (2006a) Diversity and expression of nitrogenase genes (nifH) from ectomycorrhizas of Corsican pine (Pinus nigra). Environ Microbiol 8:2224–2230. doi:10.1111/j.1462-2920.2006.01104.x

    Article  PubMed  CAS  Google Scholar 

  • Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ERB (2006b) Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56:34–43. doi:10.1111/j.1574-6941.2005.00048.x

    Article  PubMed  CAS  Google Scholar 

  • Izumi H, Cairney JWG, Killham K, Moore E, Alexander IJ, Anderson IC (2008) Bacteria associated with ectomycorrhizas of slash pine (Pinus elliottii) in south-eastern Queensland, Australia. FEMS Microbiol Lett 282:196–204. doi:10.1111/j.1574-6968.2008.01122.x

    Article  PubMed  CAS  Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2005) Fungal solubilization of rock phosphate is enhanced by forming fungal-rhizobial biofilms. Soil Biol Biochem 38:405–408. doi:10.1016/j.soilbio.2005.06.004

    Article  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13. doi:10.1016/j.femsec.2003.11.012

    Article  PubMed  CAS  Google Scholar 

  • Kataoka R, Taniguchi T, Ooshima H, Futai K (2008) Comparison of the bacterial communities established on the mycorrhizae formed on Pinus thunbergii root tips by eight species of fungi. Plant Soil 304:267–275. doi:10.1007/s11104-008-9548-x

    Article  CAS  Google Scholar 

  • Kijne JW, Bauchrowitz MA, Diaz CL (1997) Root lectins and Rhizobia. Plant Physiol 115:869–873. doi:115/3/869

    PubMed  CAS  Google Scholar 

  • Kretzer AM, King ZR, Bai S (2009) Bacterial communities associated with tuberculate ectomycorrhizae of Rhizopogon spp. Mycorrhiza 19:277–282. doi:10.1007/s00572-008-0213-2

    Article  PubMed  Google Scholar 

  • Laus MC, Logman TJ, Lamers GE, Van Brussel AA, Carlson RW, Kijne JW (2006) A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol 59:1704–1713. doi:10.1111/j.1365-2958.2006.05057.x

    Article  PubMed  CAS  Google Scholar 

  • Marie C, Broughton WJ, Deakin WJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4:336–342. doi:10.1016/S1369-5266(00)00182-5

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Kohler A, Duplessis S (2007) Living in harmony in the wood underground: ectomycorrhizal genomics. Curr Opin Plant Biol 10:204–210. doi:10.1016/j.pbi.2007.01.006

    Article  PubMed  CAS  Google Scholar 

  • Meyer JR, Linderman RG (1986) Selective influence on population of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Boil Biochem 18:191–196

    Article  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. doi:10.1146/annurev.micro.55.1.16555/1/165

    Article  PubMed  CAS  Google Scholar 

  • Murat C, Vizzini A, Bonfante P, Mello A (2005) Morphological and molecular typing of the below-ground fungal community in a natural Tuber magnatum truffle-ground. FEMS Microbiol Lett 245:307–313. doi:10.1016/j.femsle.2005.03.019

    Article  PubMed  CAS  Google Scholar 

  • Pavić A, Stanković S, Marjanović Ž (2011) Biochemical characterization of a sphingomonad isolate from the ascocarp of white truffle (Tuber magnatum Pico). Arch Biol Sci 63:697–704. doi:10.2298/ABS1103697P

    Article  Google Scholar 

  • Pegler DN, Spooner BM, Young TWK (1993) British truffles. A revision of British hypogeous fungi. Royal Botanic Garden, Kew

    Google Scholar 

  • Rainey PB, Cole ALJ, Fermor TR, Wood DA (1990) A model system for examining involvement of bacteria in basidiome initiation of Agaricus-Bisporus. Mycol Res 94:191–195

    Article  Google Scholar 

  • Rangel-Castro JI, Levenfors JJ, Danell E (2002) Physiological and genetic characterization of fluorescent Pseudomonas associated with Cantharellus cibarius. Can J Microbiol 48:739–748. doi:10.1139/W02-062

    Article  PubMed  CAS  Google Scholar 

  • Rodelas B, Lithgow JK, Wisniewski-Dye F, Hardman A, Wilkinson A, Economou A, Williams P, Downie JA (1999) Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J Bacteriol 181:3816–3823

    PubMed  CAS  Google Scholar 

  • Rumjanek NG, Dobert RC, van Berkum P, Triplett EW (1993) Common soybean inoculant strains in Brazil are members of Bradyrhizobium elkanii. Appl Environ Microbiol 59:4371–4373

    PubMed  CAS  Google Scholar 

  • Ryberg M, Matheny PB (2012) Asynchronous origins of ectomycorrhizal clades of Agaricales. Proc R Soc B Biol Sci 279:2003–2011. doi:10.1098/rspb.2011.2428

    Article  Google Scholar 

  • Sbrana C, Agnolucci M, Bedini S, Lepera A, Toffanin A, Giovannetti M, Nuti MP (2002) Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiol Lett 211:195–201. doi:S0378109702007127

    Article  PubMed  CAS  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191. doi:10.4161/psb.6.2.14146

    Article  PubMed  CAS  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Krol J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7. doi:10.1186/1475-2859-5-7

    Article  PubMed  Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424. doi:10.1111/j.1469-8137.2007.02141.x

    Article  PubMed  CAS  Google Scholar 

  • Tarkka MT, Piechulla B (2007) Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol 175:381–383. doi:10.1111/j.1469-8137.2007.02165.x

    Article  PubMed  CAS  Google Scholar 

  • Tarkka MT, Lehr NA, Hampp R, Schrey SD (2008) Plant behavior upon contact with Streptomycetes. Plant Signal Behav 3:917–919

    PubMed  Google Scholar 

  • Timonen S, Hurek T (2006) Characterization of culturable bacterial populations associating with Pinus sylvestris-Suillus bovinus mycorrhizospheres. Can J Microbiol 52:769–778. doi:10.1139/W06-016

    Article  PubMed  CAS  Google Scholar 

  • Trappe JM (1979) The orders, families, and genera of hypogeus Ascomycotina (truffles and their relatives). Mycotaxon 9:297–340

    Google Scholar 

  • Uroz S, Calvaruso C, Turpaul MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027. doi:10.1128/Aem.00121-07

    Article  PubMed  CAS  Google Scholar 

  • Warmink JA, van Elsas JD (2008) Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J 2:887–900. doi:10.1038/ismej.2008.41

    Article  PubMed  CAS  Google Scholar 

  • Wu XQ, Hou L-L, Sheng J-M, Ren J-H, Zheng L, Chen D, Ye J-R (2011) Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii. Biol Fertil Soils. doi:10.1007/s00374-011-0638-1

  • Zambonelli A, Iotti M (2006) The pure culture of Tuber mycelia and their use in the cultivation of the truffles. Actes du premier Symposium sur les Champignons hypogés du Bassin Méditerranéen, RABAT, Kabar L

    Google Scholar 

  • Zambonelli A, Iotti M, Barbieri E, Amicucci A, Stocchi V, Peintner U, Hall I (2009) The microbial communities and fruiting of edible ectomycorrhizal mushrooms. Yunnan Zhiwu Yanjiu IWEMM5 16:81–85

    Google Scholar 

  • Zampieri E, Murat C, Cagnasso M, Bonfante P, Mello A (2010) Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatum truffle-ground. FEMS Microbiol Ecol 71:43–49. doi:10.1111/j.1574-6941.2009.00783.x

    Article  PubMed  CAS  Google Scholar 

  • Zeller B, Brechet C, Maurice JP, Le Tacon F (2008) Saprotrophic versus symbiotic strategy during truffle ascocarp development under holm oak. A response based on (13)C and (15)N natural abundance. Ann For Sci. doi:10.1051/Forest:2008037

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Barbieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barbieri, E., Ceccaroli, P., Palma, F., Agostini, D., Stocchi, V. (2012). Ectomycorrhizal Helper Bacteria: The Third Partner in the Symbiosis. In: Zambonelli, A., Bonito, G. (eds) Edible Ectomycorrhizal Mushrooms. Soil Biology, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33823-6_8

Download citation

Publish with us

Policies and ethics