Skip to main content

Influence of Edaphic Factors on Edible Ectomycorrhizal Mushrooms: New Hypotheses on Soil Nutrition and C Sinks Associated to Ectomycorrhizae and Soil Fauna Using the Tuber Brûlé Model

  • Chapter
  • First Online:
Edible Ectomycorrhizal Mushrooms

Part of the book series: Soil Biology ((SOILBIOL,volume 34))

Abstract

Fungi can strongly acidify their immediate soil environment and can cause a change in the equilibrium of soil carbonates. The Tuber melanosporum brûlé is an interesting biological model for studying soil reaction (pH) and decarbonation–recarbonation soil processes associated with ectomycorrhizal plants and soil fauna communities. Over the past 10 years ,we have observed that (1) a high concentration of active carbonate and exchangeable Ca2+ in the soil favors T. melanosporum fruiting body production and larger brûlés, (2) the amount of active carbonate is significantly higher and the total carbonate is significantly lower inside the T. melanosporum brûlé than outside the brûlé, (3) T. melanosporum ectomycorrhizae impact biodiversity and soil quality, and (4) the calciferous glands of Lumbricidae have an impact on soil reaction and carbonate availability in the brûlés. Here we propose new hypotheses on ectomycorrhizal fungal ecology, soil biology, and inorganic C soil sinks, suggesting that (1) the model that best explains the cause and effect of all brûlé observations is a feedback process; (2) this model assumes that T. melanosporum’s ability to modify soil properties has a direct impact on plant nutrition and degree of plant mycorrhization, and this hypothesis could have a considerable impact from the evolutionary standpoint of ectomycorrhizal fungi; and (3) the integrated action of T. melanosporum and/or other ectomycorrhizal fungal populations, and earthworms, could be of major importance in the cycling and sequestration of inorganic C in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antibus RK, Linkins AE (1992) Effects of liming a red pine forest floor on mycorrhizal numbers and mycorrhizal and soil acid phosphatase activities. Soil Biol Biochem 24:479–487. doi:10.1016/0038-0717(92)90211-F

    Article  Google Scholar 

  • Bakkera MR, Garbayeb J, Nys C (2000) Effect of liming on the ectomycorrhizal status of oak. For Ecol Manage 126:121–131. doi:10.1016/S0378-1127(99)00097-3

    Article  Google Scholar 

  • Bencivenga M, Granetti B (1989) Indagine preliminare sull contenuto in macro e microelementi del terreno e di carpofori di Tuber melanosporum Vitt. Micol Ital 3:25–30

    Google Scholar 

  • Bobby L, Jones TH (2008) Interaction between Basidiomycota and invertebrates. In: Bobby L, Franklan JC, Van West P (eds) Ecology of saprotrophic basidiomycetes. Academic, Amsterdam

    Google Scholar 

  • Böllmann J, Elmer M, Wöllecke J, Raidl S, Hütti RF (2010) Defensive strategies of soil fungi to prevent grazing by Folsomia candida (Collembola). Pedobiology 53:107–114. doi:10.1016/j.pedobi.2009.06.003

    Article  Google Scholar 

  • Bragato G, Lulli L, Castrignano A, Bencivenga M (2001) Regionalization analysis of some soil factors related to Tuber melanosporum production in an experimental truffle bed. In: Corvoisier M, Olivier JM, Chevalier G (eds) V International congress: science and cultivation of truffle. Federation Française des trufficulteurs, Aix-en-Provence

    Google Scholar 

  • Breemen NV, Buurman P (1998) Soil formation. Kluwer Academic, Dordrecht

    Google Scholar 

  • Briones MJI, Ostle NJ, Piearce TG (2008) Stable isotopes reveal that the calciferous gland of earthworms is a CO2-fixing organ. Soil Biol Biochem 40:554–557. doi:10.1016/j.soilbio.2007.09.012

    Article  CAS  Google Scholar 

  • Brussaard L, Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244. doi:10.1016/j.agee.2006.12.013

    Article  Google Scholar 

  • Callot G (1999) La truffe, la terre, la vie. INRA, Versailles

    Google Scholar 

  • Callot G, Daignieres y Fernández D, Raymond M, Salducci X (2001) Incidences du sol sur la production de truffe noire du Perigord Tuber melanosporum. In: Corvoisier M, Olivier JM, Chevalier G (eds) V International congress: science and cultivation of truffle. Federation Française des trufficulteurs, Aix-en-Provence

    Google Scholar 

  • Canti MG (2009) Experiments on the origin of 13C in the calcium carbonate granules produced by the earthworm Lumbricus terrestris. Soil Biol Biochem 41:2588–2592. doi:10.1016/j.soilbio.2009.09.007

    Article  CAS  Google Scholar 

  • Canti MG, Piearce TG (2003) Morphology and dynamics of calcium carbonate granules produced by different earthworm species. Pedobiology 47:511–521. doi:10.1078/0031-4056-00221

    Google Scholar 

  • Castrignano A, Goovaerts P, Lulli L, Bragato G (2000) A geostatistical approach to estimate probability of occurrence of Tuber melanosporum in relation to some soil properties. Geoderma 98:95–113. doi:10.1016/S0016-7061(00)00054-9

    Article  Google Scholar 

  • Chan KY (2003) Using earthworms to incorporate lime into subsoil to ameliorate acidity. Commun Soil Sci Plant Anal 34:985–997. doi:10.1081/CSS-120019104

    Article  CAS  Google Scholar 

  • Chevalier G, Palenzona M (2011) Les implications de 40 annees de recherche sur les truffes: perspectives d’avenir. In: Donnini D, Baciarelli Falini L, Bencivenga M, Di Massimo G (eds) Atti di 3° Congresso Internazionale di Spoleto sul Tartufo. Comunità Montana dei Monti Martani Serano e Subasio, Spoleto

    Google Scholar 

  • Coleman DC, Crossley DA, Hendrix PF (2004) Fundamentals of soil ecology. Elsevier Academic, Burlington

    Google Scholar 

  • Coli R, Maurizi A, Granetti B, Damiani P (1990) Composizione chimica e valore nutritivo del tartufo nero Tuber melanosporum Vitt. e del tartufo bianco Tuber magnatum Pico raccolti in Umbria. In: Bencivenga M, Granetti B (eds) Secondo congresso internazionale sul tartufo. Comunità Montana dei Monti Martani e del Serano, Spoleto

    Google Scholar 

  • Cooke RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell Scientific, Cambridge

    Google Scholar 

  • Davidson DA, Grieve IC (2006) Relationship between biodiversity and soil structure and function: evidence from laboratory and field experimental. Appl Soil Ecol 33:176–185. doi:10.1016/j.apsoil.2005.11.002

    Article  Google Scholar 

  • Decaëns T, Jiménez JJ, Gioia C, Measey GJ, Lavelle P (2006) The values of soil animals for conservation biology. Eur J Soil Biol 42(S1):S23–S38. doi:10.1016/j.ejsobi.2006.07.001

    Article  Google Scholar 

  • Dessolas H, Chevalier G, Pargney JC (2008) Nouveau manuel de trufficulture. Misenpage, Périgueux

    Google Scholar 

  • Domínguez JA, Selva J, Rodríguez JA, Saiz de Omeñaca JA (2006) The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. For Ecol Manage 231:226–233. doi:10.1016/j.foreco.2006.05.052

    Article  Google Scholar 

  • Douchafour P, Souchier B (1979) Pédologie. 2. Constituants et Propriétés du Sol. Masson, Paris

    Google Scholar 

  • Dupré C, Chevalier G, Morizet J, Leblevenec L (1982) Influence de l´ázote et du phospore sur la mycorhization de Quercus pubescens Willd. par Tuber melanosporum Vitt. en conditions contrôlées. In: INRA (ed) Les Mycorhizes: biologie et utilisation. INRA, Dijon

    Google Scholar 

  • Erland S, Soderstrom B (1991) Effect of liming on ectomycorrhizal fungi infecting Pinus sylvestris L. 1. Mycorrhizal infection in limed humus in the laboratory and isolation of fungi from mycorrhizal roots. New Phytol 115:675–682. doi:10.1111/j.1469-8137.1990.tb00499.x

    Article  Google Scholar 

  • Falini LB, Granetti B (1998) Analysis of Tuber melanosporum Vitt. mycorrhizae and of other fungi in a cultivated truffle bed of Corylus colurna L. Micol Ital 27:3–12

    Google Scholar 

  • Follet RH, Murphy LS, Donahue RL (1981) Fertilizers and soil amendments. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gago-Duport L, Briones MJI, Rodríguez JB, Covelo B (2008) Amorphous calcium carbonate biomineralization in the earthworm’s calciferous gland: pathways to the formation of crystalline phases. J Struct Biol 162:422–435. doi:10.1016/j.jsb.2008.02.007

    Article  PubMed  CAS  Google Scholar 

  • García-Montero LG (2000) Estudio sobre la trufa negra Tuber melanosporum Vitt. en el centro de España: patrones ecológicos, análisis edáficos e interacciones de micorrizas en la truficultura. PhD Thesis, Universidad de Alcalá, Alcalá de Henares

    Google Scholar 

  • García-Montero LG, Casermeiro MA, Hernando J, Hernando I (2006) Soil factors that influence the fruiting of Tuber melanosporum (black truffle). Aust J Soil Res 44:731–738. doi:10.1071/SR06046

    Article  Google Scholar 

  • García-Montero LG, Casermeiro MA, Hernando I, Hernando J (2007a) Effect of active carbonate, exchangeable calcium, and stoniness of soil on Tuber melanosporum carpophore production. NZ J Crop Hortic Sci 35:139–146

    Article  Google Scholar 

  • García-Montero LG, Manjón JL, Pascual C, García-Abril A (2007b) Ecological patterns of Tuber melanosporum and different Quercus Mediterranean forests: quantitative production of truffles, burn sizes and soil studies. For Ecol Manage 242:288–296. doi:10.1016/j.foreco.2007.01.045

    Article  Google Scholar 

  • García-Montero LG, Díaz P, Martín-Fernández S, Casermeiro MA (2008a) Soil factors that favour the production of Tuber melanosporum carpophores over other truffle species: a multivariate statistical approach. Acta Agric Scand Soil Plant Sci 58:322–329. doi:10.1080/09064710701743286

    Google Scholar 

  • García-Montero LG, Quintana A, Valverde-Asenjo I, Díaz P (2009a) Calcareous amendments in truffle culture: a soil nutrition hypothesis. Soil Biol Biochem 41:1227–1232. doi:10.1016/j.soilbio.2009.03.003

    Article  Google Scholar 

  • García-Montero LG, Valverde-Asenjo I, Díaz P, Pascual C (2009b) Statistical patterns of carbonates and total organic carbon on soils of Tuber rufum and T. melanosporum (black truffle) brûlés. Aust J Soil Res 47:206–212. doi:10.1071/SR08084

    Article  Google Scholar 

  • García-Montero LG, Valverde-Asenjo I, Díaz P, Pascual C, Menta C (2011) New data on impact of earthworms activity on black truffle soils. In: Donnini D, Baciarelli Falini L, Bencivenga M, Di Massimo G (eds) Atti di 3° Congresso Internazionale di Spoleto sul Tartufo. Comunità Montana dei Monti Martani Serano e Subasio, Spoleto

    Google Scholar 

  • Gaucher G (1971) Traité de pédologie agricole. Le sol ses caractéristiques agronomiques, Dunod, Paris

    Google Scholar 

  • Gelpe J, Timbal J (1986) Action du calcaire sur la germination et la croissance du chêne rouge d’Amérique (Q. rubra L.). Ann For Sci 43:397–402

    Article  Google Scholar 

  • Granetti B, De Angelis A, Materozzi G (2005) Umbria terra di tartufi. Regione Umbria, Terni

    Google Scholar 

  • Hagvar S (1982) Collembola in Norwegian coniferous forest soils. I. Relations to plant-communities and soil fertility. Pedobiology 24:255–296

    Google Scholar 

  • Harold S, Tordoff GM, Jones TH, Bobby L (2005) Mycelia responses of Hypholoma fasciculare to collembola grazing: effect of inoculum age, nutrient status and resource quality. Mycol Res 109:927–935. doi:10.1017/S095375620500331X

    Article  PubMed  Google Scholar 

  • Hoffmann D (2011) Mycorrhiza modulates aboveground tri-trophic interactions to the fitness benefit of its host plant. Ecol Entomol. doi:10.1111/J.1365-2311.2011.01298.X

  • Huettl RF, Zoettl HW (1993) Liming as a mitigation tool in Germany’s declining forests-reviewing results from former and recent trials. For Ecol Manage 61:325–338. doi:10.1016/0378-1127(93)90209-6

    Article  Google Scholar 

  • Jaillard B, Barry-Etienne D, Diette S, Moundy PJ, Plassard C, Salducci X (2007) Carbonates, matières organiques et pH des sols truffiers. In: Consejería de Medio Ambiente (ed) Proceedings of first conference on the conservation and sustainable use of wild fungi. Junta de Andalucía, Córdoba

    Google Scholar 

  • Jongmans AG, Pulleman MM, Balabane M, Van Oort F, Marinissen JCY (2003) Soil structure and characteristics of organic matter in two orchards differing in earthworm activity. Appl Soil Ecol 24:219–232. doi:10.1016/S0929-1393(03)00072-6

    Article  Google Scholar 

  • Jonsson T, Kokalj S, Finlay R, Erland S (1999) Ectomycorrhizal community structure in a limed spruce forest. Mycol Res 103:501–508. doi:10.1017/S0953756298007461

    Article  Google Scholar 

  • Kaneda S, Kaneko N (2004) The feeding preference of a collembolan (Folsomia candida Willem) on ectomycorrhiza (Pisolithus tinctorius Pers.) varies with mycelial growth condition and vitality. Appl Soil Ecol 27:1–5. doi:10.1016/j.apsoil.2004.04.001

    Article  Google Scholar 

  • Kjøller R, Clemmensen KE (2009) Belowground ectomycorrhizal fungal communities respond to liming in three southern Swedish coniferous forest stands. For Ecol Manage 257:2217–2225. doi:10.1016/j.foreco.2009.02.038

    Article  Google Scholar 

  • Kreutzer K (1995) Effects of forest liming on soil processes. Plant Soil 168:447–470. doi:10.1007/BF00029358

    Article  Google Scholar 

  • Kuznestova NA (2002) Classification of collembola communities in the east-European taiga. Pedobiology 46:373–384. doi:10.1078/0031-4056-00145

    Google Scholar 

  • Lee MR, Hodson ME, Langworthy G (2008) Earthworms produce granules of intricately zoned calcite. Geology 36:943–946. doi:10.1130/G25106A.1

    Article  CAS  Google Scholar 

  • Lian B, Dong YR, Hou WG, Tong LH, Yuan S (2007) Ectomycorrhizal fungi in Jiangsu province, China. Pedosphere 17:30–35. doi:10.1016/S1002-0160(07)60004-6

    Article  Google Scholar 

  • López J, López J (1990) El diagnóstico de suelos y plantas. Mundi-Prensa, Madrid

    Google Scholar 

  • Loué A (1986) Les oligo-elements en agriculture. Nouvelle Librairie, Paris

    Google Scholar 

  • Lulli L, Bragato G, Gardin L (1999) Occurrence of Tuber melanosporum in relation to soil surface layer properties and soil differentiation. Plant Soil 214:85–92. doi:10.1023/A:1004602519974

    Article  CAS  Google Scholar 

  • Marañés A, Sánchez JA, Haro S, Sánchez ST, Lozano FJ (1994) Análisis de Suelos, metodología e Interpretación. Universidad de Almeria, Almeria

    Google Scholar 

  • Materna J (2004) Does forest type and vegetation patchiness influence horizontal distribution of soil Collembola in two neighbouring forest sites? Pedobiology 48:339–347. doi:10.1016/j.pedobi.2004.04.003

    Article  Google Scholar 

  • Menta C, Tarasconi K, Garcia-Montero LG, Vicari M, Gregori G (2011) Comunità edafica animale in suoli italiani e spagnoli interessati dalla presenza del tartufo. In: Gianguzza P, Chemello R (eds) Riassunti XXI Congresso della Società Italiana di Ecologia. Università degli Studi di Palermo, Palermo

    Google Scholar 

  • Mier N, Canete S, Klaebe A, Chavent L, Fournier D (1996) Insecticidal properties of mushroom and toadstool carpophores. Phytochemistry 41:1293–1299. doi:10.1016/0031-9422(95)00773-3

    Article  PubMed  CAS  Google Scholar 

  • Minnesota Forest Resources Council (1999) Sustaining Minnesota forest resources: voluntary site-level forest management guidelines for landowners, lagers, and resources managers. Minnesota Forest Resources Council, St. Paul

    Google Scholar 

  • Montecchi A, Sarasini M (2000) Atlante fotografico di funghi ipogei. Associazione Micologica Bresadola, Vicenza

    Google Scholar 

  • Moreno G, Manjón JL, Zugaga A (1986) Guía Incafo de las setas de la Península Ibérica. Incafo, Madrid

    Google Scholar 

  • Oria JA (1989) Silvicultura y ordenación de montes productores de hongos micorrizógenos comestibles. Bol Soc Micol Madrid 13:175–188

    Google Scholar 

  • Oria JA (1991) Bases para la selvicultura y evaluación de montes productores de hongos micorrizógenos comestibles. Montes 26:48–55

    Google Scholar 

  • Ourzik A (2001) Les sols argilocalcaires à potentiel truffier de la Vienne. In: Corvoisier M, Olivier JM, Chevalier G (eds) V International congress: science and cultivation of truffle. Federation Française des trufficulteurs, Aix-en-Provence

    Google Scholar 

  • Papa G (1980) Purification attempts of the plant inhibitory principle of Tuber melanosporum Vitt. Phytopathol Medit 19:177

    Google Scholar 

  • Pargney JC, Boumaza O, Toutain F (2008) In situ micro-and ultrastructural study of ascocarp development in Tuber mesentericum. In: Donnini D, Baciarelli Falini L, Bencivenga M, Di Massimo G (eds) Atti di 3° Congresso Internazionale di Spoleto sul Tartufo. Comunità Montana dei Monti Martani Serano e Subasio, Spoleto

    Google Scholar 

  • Parisi V, Menta C, Gardi C, Jacomini C, Mozzanica E (2005) Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agric Ecosyst Environ 105:323–333. doi:10.1016/j.agee.2004.02.002

    Article  Google Scholar 

  • Plattner I, Hall IR (1995) Parasitism of non-host plans by the mycorrhizal fungus Tuber melanosporum. Mycol Res 99:1367–1370. doi:10.1016/S0953-7562(09)81223-9

    Article  Google Scholar 

  • Poitou N (1988) Cas particulier des sols truffiers. Bull FNPT-CTIFL 10:11–16

    Google Scholar 

  • Poma A, Limongi T, Pacioni G (2006) Current state and perspectives of truffle genetics and sustainable biotechnology. Appl Microbiol Biotechnol 72:437–441. doi:10.1007/s00253-006-0519-y

    Article  PubMed  CAS  Google Scholar 

  • Pottier Y (1986) Étude expérimentale des interactions minéraux-hyphes mycéliennes. Cas de systèmes carbonatés et siliceux. PhD Thesis, Ecole Normal Superior Agronomie, Montpellier

    Google Scholar 

  • Püttsepp U, Roslingd A, Taylor AFS (2004) Ectomycorrhizal fungal communities associated with Salix viminalis L. and S. dasyclados Wimm. clones in a short-rotation forestry plantation. For Ecol Manage 196:413–424. doi:10.1016/j.foreco.2004.04.003

    Article  Google Scholar 

  • Ricard JM (2003) La truffe. Guide technique de trufficulture. Centre Technique Interprofessionnel des Fruits et Légumes CTIFL, Paris

    Google Scholar 

  • Riousset L, Riousset G, Chevalier G, Bardet ME (2001) Truffes d’Europe et de Chine. INRA, Paris

    Google Scholar 

  • Rotheray TD, Chancellor M, Jones TH, Boddy L (2011) Grazing by collembola affects the outcome of interspecific mycelia interactions of cord-forming basidiomycetes. Fungal Ecol 4:42–55. doi:10.1016/j.funeco.2010.09.001

    Article  Google Scholar 

  • Roux C, Sejalon-Delmas N, Martins M, Parguey-Leduc A, Dargent R, Becard G (1999) Phylogenetic relationships between European and Chinese truffles based on parsimony and distance analysis of ITS sequences. FEMS Microbiol Lett 180:147–155. doi:10.1016/S0378-1097(99)00474-7

    Article  PubMed  CAS  Google Scholar 

  • Ruf A, Beck L, Dreher P, Hund-Rinke K, Römbke J, Spelda J (2003) A biological classification concept for the assessment of soil quality: “biological soil classification scheme” (BBSK). Agric Ecosyst Environ 98:263–271. doi:10.1016/S0167-8809(03)00086-0

    Article  Google Scholar 

  • Schneider BV, Zech W (1990) The influence of Mg fertilization on growth and mineral contents of fine roots in Picea abies (Karst. L.) stands at different stages of decline in NE-Bavaria. Water Air Soil Pollut 54:469–476

    CAS  Google Scholar 

  • Sourzat P (2001) Les limites des criteries agronomiques dans l´analyse de terre en truffle culture. In: Corvoisier M, Olivier JM, Chevalier G (eds) V International congress: science and cultivation of truffle. Federation Française des trufficulteurs, Aix-en-Provence

    Google Scholar 

  • Sourzat P (2004) Questions d’ecologie appliquiés la trufficulture. Lycie professionnel agricole de Cahors-Le Montat, Le Montat

    Google Scholar 

  • Sourzat P (2005) Pressure of contamination mycorrhizal fungi against black truffle in spontaneous and cultivated truffieres in France. In: Honrubia M, Morte A, Torrente P (eds) Abstracts of the fourth international workshop on edible mycorrhizal mushroom. Universidad de Murcia, Murcia

    Google Scholar 

  • Sourzat P, Dubiau JM (2001) Les contaminations par le Tuber brumale dans les plantations truffières: observations, expérimentations et stratégie de protection en culture, exemple d’une plantation truffière à Miers, dans le Lot, France. In: Corvoisier M, Olivier JM, Chevalier G (eds) V International congress: science and cultivation of truffle. Federation Française des trufficulteurs, Aix-en-Provence

    Google Scholar 

  • Sourzat P, Sánchez A, Ourzick A, Roux JJ (2001) Analyse du statut mycorhizien de brûlés stériles dans trois régions de France: Midi-Pyrénées (Lot), Paca (Var), Charente Poitou (Vienne). In: Corvoisier M, Olivier JM, Chevalier G (eds) V International congress: science and cultivation of truffle. Federation Française des trufficulteurs, Aix-en-Provence

    Google Scholar 

  • Tarasconi K, Menta C, García-Montero LG, Gregori G (2011) Effetti della presenza del tartufo sulla comunità edafica. In: Dazzi C (ed) Atti del workshop La percezione del suolo. Le Penseur, Palermo

    Google Scholar 

  • Trueman RJ, Gonzalez-Meler MA (2005) Accelerated belowground C cycling in a managed agroforest ecosystem exposed to elevated carbon dioxide concentrations. Glob Chang Biol 11:1258–1271. doi:10.1111/j.1365-2486.2005.00984.x

    Article  Google Scholar 

  • Valverde-Asenjo I, García-Montero LG, Quintana A, Velázquez J (2009) Calcareous amendments to soils to eradicate Tuber brumale from T. melanosporum cultivations: a multivariate statistical approach. Mycorrhiza 19:159–165. doi:10.1111/j.1365-2486.2005.00984.x

    Article  PubMed  Google Scholar 

  • Wang Y, Hall IR (2004) Edible ectomycorrhizal mushrooms: challenges and achievements. Can J Bot 82:063–073. doi:10.1139/B04-051

    Article  Google Scholar 

  • Wang Y, Tan ZM, Zhang DC, Murat C, Jeandroz S, Le Tacon F (2006) Phylogenetic and populational study of the Tuber indicum complex. Mycol Res 110:1034–1045. doi:10.1016/j.mycres.2006.06.013

    Article  PubMed  Google Scholar 

  • Wardle DA, Yeates GW, Watson RN, Nicholson KS (1995) The detritus food-web and the diversity of soil fauna as indicators of disturbance regimes in agro-ecosystems. In: Collins H, Robertson G, Klug M (eds) The significance and regulation of soil biodiversity. Kluwer Academic, Dordrecht

    Google Scholar 

  • Wiecek CS, Messenger AS (1972) Calcite contributions by earthworms to forest soils in Northern Illinois. Soil Sci Soc Am J 36:478–480

    Article  CAS  Google Scholar 

  • Wild A (1992) Russell’s soil conditions and plant growth. Longman, London

    Google Scholar 

Download references

Acknowledgments

We would like to dedicate this chapter (and the 10 years of research) to Domingo Moreno (my friend, co-author and the greatest truffle hunter I know), Gabriella Di Massimo (who introduced me to the truffle world and gave me her honesty, great knowledge, and passion for work and field research), and Gérard Chevalier (a great teacher and a leading authority in truffle culture). We would like to thank editors Alessandra Zambonelli and Gregory Bonito for this opportunity. We also thank José Díaz, Manuel Doñate and Juan María Estrada (Inotruf, Sarrión, Teruel), Asunción Quintana and Luis María Ibáñez (Alava), and Pru and Fernando Arredondo for their support and teaching. We thank Justo, Domingo Padre, Emilio, Jose María, Pepe, Abel and the other truffle collectors, Doña Pura, Chon and the people and Council of Peralejos de las Truchas, and the Alto Tajo Nature Reserve Institution. We thank Margarita, Luis, Miriam, Pablo, and all my family for their support. We also thank the Department of Soil Science at the Complutense University of Madrid, as well as Juan Hernando, José Manuel Cano, and José Ramón Quintana for their support. This work will be presented as part of a Ph.D. thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis G. García-Montero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

García-Montero, L.G. et al. (2012). Influence of Edaphic Factors on Edible Ectomycorrhizal Mushrooms: New Hypotheses on Soil Nutrition and C Sinks Associated to Ectomycorrhizae and Soil Fauna Using the Tuber Brûlé Model. In: Zambonelli, A., Bonito, G. (eds) Edible Ectomycorrhizal Mushrooms. Soil Biology, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33823-6_6

Download citation

Publish with us

Policies and ethics