Skip to main content

Biological Remediation of Petroleum Hydrocarbons in Soil: Suitability of Different Technologies Applied in Mesocosm and Microcosm Trials

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

Here, we report the results of a study aiming at searching for a suitable biological technology for petroleum hydrocarbons (PHC) removal from a soil with weathered contamination. Different experiments were carried out, in parallel: a pilot project, in mesocosm-scale trials, which took place in the environment of a petroleum refinery, and within the same period, shorter experiments were also carried out outdoor, at microcosm scale, at lab environment. The following specific aims were persecuted: (1) comparison of the effectiveness of phytoremediation (different plants were tested, in parallel, for this purpose) with bioremediation (by means of indigenous microorganisms only—natural attenuation—and by using bioaugmentation) and (2) a possible synergistic effect resulting of simultaneous application of more than one remediation technology (phytoremediation, bioremediation and soil amendments). In all studies, the potential of each tested technology for remediation of recent and old contamination was also investigated, in parallel, since the degree of bioavailability of PHC can be very different in the two cases. The more relevant conclusion was that the salt marsh plant Scirpus maritimus could improve the efficiency of PHC degradation, relatively to natural attenuation. In the presence of this plant, degradation of PHC was not only faster but also extensive to weathered contamination, to which bioremediation was not effective, being particularly efficient for the heavier PHC from weathered contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agamuthu P, Abioye OP, Aziz AA (2010) Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. J Hazard Mater 179:891–894

    Article  PubMed  CAS  Google Scholar 

  • Agarry SE, Owabor CN, Yusuf RO (2010) Studies on biodegradation of kerosene in soil under different bioremediation strategies. Bioremediat J 14:135–141

    Article  CAS  Google Scholar 

  • Aldrett S, Bonner JS, Mills MA, Autenrieth RL, Stephens FL (1997) Microbial degradation of crude oil in marine environments tested in a flask experiment. Water Res 31:2840–2848

    Article  CAS  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79:273–276

    Article  PubMed  CAS  Google Scholar 

  • Ayotamuno JM, Kogbara RB, Agoro OS (2009) Biostimulation supplemented with phytoremediation in the reclamation of a petroleum contaminated soil. World J Microbiol Biotechnol 25:1567–1572

    Article  CAS  Google Scholar 

  • Banks M, Schwab P, Liu B, Kulakow P, Smith J, Kim R (2003) The effect of plants on the degradation and toxicity of petroleum contaminants in soil: a field assessment. Adv Biochem Eng Biotechnol 78:75–96

    PubMed  CAS  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta SK, Joner E (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Poll Res 12:34–48

    Article  CAS  Google Scholar 

  • Cheema SA, Imran Khan M, Shen C, Tang X, Farooq M, Chen L, Zhang C, Chen Y (2010) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater 177:384–389

    Article  PubMed  CAS  Google Scholar 

  • Cheng KY, Lai KM, Wong JWC (2008) Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere 73:791–797

    Article  PubMed  CAS  Google Scholar 

  • Couto MNFS, Vasconcelos MTSD (2009) Phytoremediation of hydrocarbons from a refinery’s soil – the role of rhizosphere. In: Proceedings of remediation technologies symposium, Milan

    Google Scholar 

  • Couto MNPFS, Monteiro E, Vasconcelos MTSD (2010) Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environ Sci Pollut Res 17:1339–1346

    Article  CAS  Google Scholar 

  • Couto MNPF, Basto MCP, Vasconcelos MTSD (2011) Suitability of different salt marsh plants for petroleum hydrocarbons remediation. Chemosphere 84(8):1052–1057

    Article  PubMed  CAS  Google Scholar 

  • Couto MNPFS, Borges JR, Guedes P, Almeida R, Monteiro E, Almeida CM, Basto MCP, Vasconcelos MTSD (2012a) An improved method for determination of petroleum hydrocarbons from soil using a simple ultrasonic extraction and Fourier transform infrared spectrophotometry. Pet Sci Technol, in press

    Google Scholar 

  • Couto MNPFS, Pinto D, Basto MCP, Vasconcelos MTSD (2012b) Role of natural attenuation, phytoremediation and hybrid technologies in the remediation of a refinery soil with old/recent petroleum hydrocarbons contamination. Environ Technol, 1–8

    Google Scholar 

  • Couto MNPFS, Basto MCP, Vasconcelos MTSD (2012c) Suitability of Scirpus maritimus for petroleum hydrocarbons remediation in a refinery environment, Environ Sci Pollut Res Int, 19(1), 86–95

    Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345

    Article  PubMed  CAS  Google Scholar 

  • Devinny JS, Chang S-H (2000) Bioaugmentation for soil remediation. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottmeister U (eds) Bioremediation of contaminated soils. Marcel Dekker, New York, pp 465–488

    Google Scholar 

  • Di Toro S, Zanaroli G, Varese GC, Marchisio VF, Fava F (2008) Role of Enzyveba in the aerobic bioremediation and detoxification of a soil freshly contaminated by two different diesel fuels. Int Biodeter Biodegr 62:153–161

    Article  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  PubMed  CAS  Google Scholar 

  • Euliss K, C-h H, Schwab AP, Rock S, Banks MK (2008) Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresour Technol 99:1961–1971

    Article  PubMed  CAS  Google Scholar 

  • Fang C, Radosevich M, Fuhrmann JJ (2001) Atrazine and phenanthrene degradation in grass rhizosphere soil. Soil Biol Biochem 33:671–678

    Article  CAS  Google Scholar 

  • Frankenberger WT, Emerson KD, Turner DW (1989) In situ bioremediation of an underground diesel fuel spill: a case history. Environ Manage 13:325–332

    Article  Google Scholar 

  • Gallego JLR, Loredo J, Llamas JF, Vázquez F, Sánchez J (2001) Bioremediation of diesel-contaminated soils: evaluation of potential techniques by study of bacterial degradation. Biodegradation 12:325–335

    Article  PubMed  CAS  Google Scholar 

  • Gao Y-Z, Ling W-T, Zhu L-Z, Zhao B-W, Zheng Q-S (2007) Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants: potential and assessment. Pedosphere 17:409–418

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  PubMed  CAS  Google Scholar 

  • Gogoi BK, Dutta NN, Goswami P, Krishna Mohan TR (2003) A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Adv Environ Res 7:767–782

    Article  CAS  Google Scholar 

  • Haigh SD (1996) A review of the interaction of surfactants with organic contaminants in soil. Sci Total Environ 185:161–170

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil (CAES Circular 347). Agricultural Experiment Station, Davis, CA, p 32

    Google Scholar 

  • Huang X-D, El-Alawi Y, Gurska J, Glick BR, Greenberg BMA (2005) A multiprocess phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Johnson DL, Maguire KL, Anderson DR, McGrath SP (2004) Enhanced dissipation of chrysene in planted soil: the impact of a rhizobial inoculums. Soil Biol Biochem 36:33–38

    Article  CAS  Google Scholar 

  • Joo H-S, Ndegwa PM, Shoda M, Phae C-G (2008) Bioremediation of oil contaminated soil using Candida catenulata and food waste. Environ Pollut 156:891–896

    Article  PubMed  CAS  Google Scholar 

  • Kaimi E, Mukaidani T, Miyoshi S, Tamaki M (2006) Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ Exp Bot 55:110–119

    Article  CAS  Google Scholar 

  • Kepner RLJ, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603–615

    PubMed  CAS  Google Scholar 

  • Kirk JL, Klironomos JN, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 33:455–465

    Article  Google Scholar 

  • Kogbara RB (2008) Ranking agro-technical methods and environmental parameters in the biodegradation of petroleum-contaminated soils in Nigeria. Electron J Biotechnol 11(1):113–125

    Article  Google Scholar 

  • Lalande T, Skipper H, Wolf D, Reynolds C, Freedman D, Pinkerton B, Hartel P, Grimes L (2003) Phytoremediation of pyrene in a Cecil soil under field conditions. Int J Phytoremediation 5:1–12

    Article  PubMed  CAS  Google Scholar 

  • Lee S-H, Lee W-S, Lee C-H, Kim J-G (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892–898

    Article  PubMed  CAS  Google Scholar 

  • Liste H-H, Alexander M (2000) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40:11–14

    Article  PubMed  CAS  Google Scholar 

  • Liste H-H, Prutz I (2006) Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere 62:1411–1420

    Article  PubMed  CAS  Google Scholar 

  • Macek T, Macková M, Kás J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  PubMed  CAS  Google Scholar 

  • Mancera-López ME, Esparza-García F, Chávez-Gómez B, Rodríguez-Vázquez R, Saucedo-Castañeda G, Barrera-Cortés J (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation bioaugmentation with filamentous fungi. Int Biodeter Biodegr 61:151–160

    Article  Google Scholar 

  • Mills SA, Frankenberger WT Jr (1994) Evaluation of phosphorus sources promoting bioremediation of diesel fuel in soil. Environ Contam Tox 53:280–284

    Article  CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375

    Article  PubMed  CAS  Google Scholar 

  • Mueller KE, Shann JR (2006) PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees. Chemosphere 64:1006–1014

    Article  PubMed  CAS  Google Scholar 

  • Muratova A, Hübner T, Narula N, Wand H, Turkovskaya O, Kuschk P, Jahn R, Merbach W (2003) Rhizosphere microflora of plants used for the phytoremediation of bitumen-contaminated soil. Microbiol Res 158:151–161

    Article  PubMed  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  PubMed  CAS  Google Scholar 

  • Peng S, Zhou Q, Cai Z, Zhang Z (2009) Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J Hazard Mater 168:1490–1496

    Article  PubMed  CAS  Google Scholar 

  • Phillips LA, Greer CW, Germida JJ (2006) Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem 38:2823–2833

    Article  CAS  Google Scholar 

  • Phillips LA, Greer CW, Farrell RE, Germida JJ (2009) Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Appl Soil Ecol 42:9–17

    Article  Google Scholar 

  • Piehler MF, Maloney JS, Paerl HW (2002) Bacterioplanktonic abundance, productivity and petroleum hydrocarbon biodegradation in marinas and other coastal waters in North Carolina, USA. Mar Environ Res 54:157–168

    Article  PubMed  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Saari E, Peramaki P, Jalonen J (2007) A comparative study of solvent extraction of total petroleum hydrocarbons in soil. Microchim Acta 158:261–268

    Article  CAS  Google Scholar 

  • Sabaté J, Viñas M, Solanas AM (2004) Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils. Int Biodeter Biodegr 54:19–25

    Article  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195

    Article  PubMed  CAS  Google Scholar 

  • Seklemova E, Pavlova A, Kovacheva K (2001) Biostimulation-based bioremediation of diesel fuel: field demonstration. Biodegradation 12:311–316

    Article  PubMed  CAS  Google Scholar 

  • Thouand G, Bauda P, Oudot J, Kirsch G, Sutton C, Vidalie J (1999) Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Can J Microbiol 45:106–115

    Article  PubMed  CAS  Google Scholar 

  • Torres LG, Rojas N, Bautista G, Iturbe R (2005) Effect of temperature, and surfactant’s HLB and dose over the TPH-diesel biodegradation process in aged soils. Process Biochem 40:3296–3302

    Article  CAS  Google Scholar 

  • Vasudevan N, Rajaram P (2001) Bioremediation of oil sludge-contaminated soil. Environ Int 26:409–411

    Article  PubMed  CAS  Google Scholar 

  • Wiltse CC, Rooney WL, Chen Z, Schwab AP, Banks MK (1998) Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J Environ Qual 27:169–173

    Article  CAS  Google Scholar 

  • Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable number procedure. Can J Microbiol 42:252–258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The author acknowledges Fundação para a Ciência e a Tecnologia for the Ph.D. scholarship of M. N. Couto (SFRH/31816/2006) that was co-financed by POPH/FSE and Refinaria do Porto (GALP Energy) for financial support and logistical support by C. Santos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nazaré F. Couto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Couto, M.N.F., Basto, M.C.P., Vasconcelos, M.T.S.D. (2013). Biological Remediation of Petroleum Hydrocarbons in Soil: Suitability of Different Technologies Applied in Mesocosm and Microcosm Trials. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_9

Download citation

Publish with us

Policies and ethics