Skip to main content

Effect of Mobilising Agents on Mycoremediation of Soils Contaminated by Hydrophobic Persistent Pollutants

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

The last decades have witnessed an increasing concern of the public opinion and competent authorities regarding the accumulation of hydrophobic persistent pollutants (HPP) in both natural and anthropic ecosystems. An emerging restoration approach to contaminated soils, often referred to as bioremediation, involves the use of either resident or exogenous microbes. Its efficacy, however, is strongly affected by the recalcitrance of HPP to microbial attack due to their low water solubility and bioavailability. In this respect, the use of surface-active agents able to enhance the mobilisation of these contaminants from the soil organic phase to the aqueous one has been often shown to stimulate their biodegradation. Although the HPP degradation capability of filamentous fungi has been suggested to be less dependent on bioavailability than other microbiota, there is increasing evidence of the use of mobilising agents in fungal-assisted remediation applications. This review analyses the influence of both surfactants and other pollutant-mobilising agents, such as plant oils and cyclodextrins, on mycoremediation performances with reference to their impact on fungal growth, physiology and interactions with resident soil communities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acevedo F, Pizzul L, Castillo MP, González ME, Cea M, Gianfreda L, Diez MC (2010) Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere 80:271–278

    Article  PubMed  CAS  Google Scholar 

  • Andersson BE, Henrysson T (1996) Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi. Appl Microbiol Biotechnol 46:647–652

    Article  CAS  Google Scholar 

  • Andersson BE, Lundstedt S, Tornberg K, Schnuerer Y, Oeberg LG, Mattiasson B (2003) Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environ Toxicol Chem 22:1238–1243

    Article  PubMed  CAS  Google Scholar 

  • Asther M, Corrieu G (1987) Effect of Tween 80 and oleic acid on ligninase production by Phanerochaete chrysosporium INA-12. Enzyme Microb Technol 9:245–249

    Article  CAS  Google Scholar 

  • Asther M, Lesage L, Drapron R, Corrieu G, Odier E (1988) Phospholipid and fatty acid enrichment of Phanerochaete chrysosporium INA-12 in relation to ligninase production. Appl Environ Microbiol 27:393–398

    CAS  Google Scholar 

  • Baldrian P (2004) Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol Ecol 50:245–253

    Article  PubMed  CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Pollutant degradation by white rot fungi. Rev Environ Contam Toxicol 138:49–72

    Article  PubMed  CAS  Google Scholar 

  • Beaudette LA, Ward OP, Pickard MA, Fedorak PM (2000) Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism. Lett Appl Microbiol 30:155–160

    Article  PubMed  CAS  Google Scholar 

  • Belinky PA, Masaphy S, Levanon D, Hadar Y, Dosoretz CG (1994) Effect of medium composition on 1-octen-3-ol formation in submerged cultures of Pleurotus pulmonarius. Appl Microbiol Biotechnol 40:629–633

    Article  CAS  Google Scholar 

  • Bogan BW, Lamar RT (1999) Surfactant enhancement of the white-rot fungal PAH soil remediation. In: Bioremediation technologies for polycyclic aromatic hydrocarbons: in-situ and on-site bioremediation. Battelle, Columbus, OH, pp 81–86

    Google Scholar 

  • Bogan BW, Lamar RT, Burgos WD, Tien M (1999) Extent of humification of anthracene, fluoranthene, and benzo[α]pyrene by Pleurotus ostreatus during growth in PAH-contaminated soils. Lett Appl Microbiol 28:250–254

    Article  CAS  Google Scholar 

  • Böhmer S, Messner K, Srebotnik E (1998) Oxidation of phenanthrene by a fungal laccase in the presence of 1-hydroxybenzotriazole and unsaturated lipids. Biochem Biophys Res Commun 244:233–238

    Article  PubMed  Google Scholar 

  • Borden RC (2007) Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation. J Contam Hydrol 94:1–12

    Article  PubMed  CAS  Google Scholar 

  • Boyle CD (1995) Development of a practical method for inducing white-rot fungi to grow into and degrade organopollutants in soil. Can J Microbiol 41:345–353

    Article  CAS  Google Scholar 

  • Boyle D (2006) Effects of pH and cyclodextrins on pentachlorophenol degradation (mineralization) by white-rot fungi. J Environ Manage 80:380–386

    Article  PubMed  CAS  Google Scholar 

  • Boyle D, Wiesner C, Richardson A (1998) Factors affecting the degradation of polyaromatic hydrocarbons in soil by white-rot fungi. Soil Biol Biochem 30:873–882

    Article  CAS  Google Scholar 

  • Calvo C, Manzanera M, Silva-Castro GA, Uad I, González-López J (2009) Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci Total Environ 407:3634–3640

    Article  PubMed  CAS  Google Scholar 

  • Cañas AI, Alcalde M, Plou F, Martínez MJ, Martínez AT, Camarero S (2007) Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environ Sci Technol 41:2964–2971

    Article  PubMed  Google Scholar 

  • Capasso R, De Martino A, Arienzo M (2002) Recovery and characterization of the metal polymeric organic fraction (polymerin) from olive oil mill waste waters. J Agric Food Chem 50:2846–2855

    Article  PubMed  CAS  Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929

    Article  PubMed  CAS  Google Scholar 

  • Chung NH, Lee IS, Song HS, Bang WG (2000) Mechanisms used by a white rot fungus to degrade lignin and toxic chemicals. J Microbiol Biotechnol 10:737–752

    CAS  Google Scholar 

  • Converse AO, Matsuno R, Tanaka M, Taniguchi M (1988) A model for enzyme adsorption and hydrolysis of microcrystalline cellulose with low deactivation of the adsorbed enzyme. Biotechnol Bioeng 32:38–45

    Article  PubMed  CAS  Google Scholar 

  • Covino S, Svobodová K, Čvančarová M, D’Annibale A, Petruccioli M, Federici F, Křesinová Z, Galli E, Cajthaml T (2010a) Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant. Chemosphere 79:855–864

    Article  PubMed  CAS  Google Scholar 

  • Covino S, Čvančarová M, Muzikář M, Svobodová K, D’Annibale A, Petruccioli M, Federici F, Křesinová Z, Cajthaml T (2010b) An efficient PAH-degrading Lentinus (Panus) tigrinus strain: effect of inoculum formulation and pollutant bioavailability in solid matrices. J Hazard Mater 183:669–676

    Article  PubMed  CAS  Google Scholar 

  • Crestini C, D’Annibale A, Giovannozzi-Sermanni G (1996) Aqueous plant extracts as stimulators of laccase production in liquid cultures of Lentinus edodes. Biotechnol Tech 10:243–248

    Article  CAS  Google Scholar 

  • Crowe JD, Olsson S (2001) Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens. Appl Environ Microbiol 67:2088–2094

    Article  PubMed  CAS  Google Scholar 

  • D’Annibale A, Ricci M, Leonardi V, Quaratino D, Mincione E, Petruccioli M (2005) Degradation of aromatic hydrocarbons by white-rot fungi in a historically contaminated soil. Biotechnol Bioeng 90:723–731

    Article  PubMed  Google Scholar 

  • Dawel G, Kaestner M, Michels J, Poppitz W, Guenther W, Fritsche W (1997) Structure of a laccase-mediated product of coupling of 2,4-diamino-6-nitrotoluene to guaiacol, a model for coupling of 2,4,6-trinitrotoluene metabolites to a humic organic soil matrix. Appl Environ Microbiol 63:2560–2565

    PubMed  CAS  Google Scholar 

  • Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Article  Google Scholar 

  • Edwards DA, Liu Z, Luthy RG (1994) Surfactant solubilisation of organic compounds in soil/aqueous systems. J Environ Eng 120:5–22

    Article  CAS  Google Scholar 

  • Eggen T (1999) Application of fungal substrate from commercial mushroom production – Pleurotus ostreatus – for bioremediation of creosote contaminated soil. Int Biodeter Biodegr 44:117–126

    Article  CAS  Google Scholar 

  • Fava F, Bertin L, Fedi S, Zannoni D (2003) Methyl-β-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnol Bioeng 81:384–390

    Article  Google Scholar 

  • Fedi S, Tremaroli V, Scala D, Perez-Jimenez JR, Fava F, Young L, Zannoni D (2005) T-RFLP analysis of bacterial communities in cyclodextrin-amended bioreactors development for biodegradation of polychlorinated biphenyls. Res Microbiol 156:201–210

    Article  PubMed  CAS  Google Scholar 

  • Ferrari RA, da Silva OV, Scabio A (2005) Oxidative stability of biodiesel from soybean oil fatty acid ethyl esters. Sci Agric 62:291–295

    Article  CAS  Google Scholar 

  • Ford CI, Walter M, Northcott GL, Di HJ, Kameron KC, Trower T (2007) Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal by New Zealand Trametes species in contaminated field soils. J Environ Qual 36:1749–1759

    Article  PubMed  CAS  Google Scholar 

  • Garon D, Krivobok S, Wouessidjewe F, Seigle-Murandi F (2002) Influence of surfactants on solubilization and degradation of fluorene. Chemosphere 47:303–309

    Article  PubMed  CAS  Google Scholar 

  • Garon D, Sage L, Wouessidjewe F, Seigle-Murandi F (2004) Enhanced degradation of fluorene in soil slurry by Absidia cylindrospora and maltosyl cyclodextrins. Chemosphere 56:159–166

    Article  PubMed  CAS  Google Scholar 

  • Giese EC, Covizzi LG, Dekker RFH, Barbosa AM (2004) Influência de Tween na produção de lacases constitutivas e indutivas pelo Botryosphaeria sp. Acta Sci Biol Sci 26:463–470

    Google Scholar 

  • Giubilei MA, Leopardi V, Federici E, Covino S, Šašek V, Novotny C, Federici F, D’Annibale A, Petruccioli M (2009) Effect of mobilizing agents on mycoremediation and impact on the indigenous microbiota. J Chem Technol Biotechnol 84:836–844

    Article  CAS  Google Scholar 

  • Goes AP, Sheppard JD (1999) Effect of surfactants on a-amylase production in a solid substrate fermentation process. J Chem Technol Biotechnol 74:709–712

    Article  CAS  Google Scholar 

  • Hadibarata T, Tachibana S (2009) Enhanced Chrysene Biodegradation in Presence of a Synthetic Surfactant. In: Obayashi Y, Isobe T, Subramanian A, Suzuki S, Tanabe S (eds) Interdisciplinary studies on environmental chemistry – environmental research in Asia. Terrapub, Tokyo, pp 301–308

    Google Scholar 

  • Haigh S (1996) A review of interaction of surfactants with organic contaminants in soil. Sci Total Environ 185:161–170

    Article  CAS  Google Scholar 

  • Hsieh C, Wang H-L, Chen C-C, Hsu T-H, Tseng MH (2008) Effect of plant oil and surfactant on the production of mycelial biomass and polysaccharides in submerged culture of Grifola frondosa. Biochem Eng J 38:198–205

    Article  CAS  Google Scholar 

  • in der Wiesche C, Martens R, Zadrazil F (1996) Two-step degradation of pyrene by white rot fungi and soil microorganisms. Appl Microbiol Biotechnol 46:653–659

    Article  PubMed  CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528

    Article  PubMed  CAS  Google Scholar 

  • Juhasz AL (2008) Can bioavailability assays predict the efficacy of PAH bioremediation? Dev Soil Sci 32:569–587

    Article  CAS  Google Scholar 

  • Kim J-E, Fernandes E, Bollag J-M (1997) Enzymatic coupling of the herbicide bentazon with humus monomers and characterization of reaction products. Environ Sci Technol 31:2392–2398

    Article  CAS  Google Scholar 

  • Klummp E, Heitman H, Schwuger MJ (1991) Interactions in surfactant/pollutant/s/soil mineral systems. Tens Surfact Deterg 28:441–446

    Google Scholar 

  • Kohlmeier S, Smits TMH, Ford RM, Keel C, Harms H, Lukas YW (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646

    Article  PubMed  CAS  Google Scholar 

  • Kotterman MJJ, Rietberg HJ, Hage A, Field JA (1998) Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of non-ionic surfactants. Biotechnol Bioeng 57:220–227

    Article  PubMed  CAS  Google Scholar 

  • Laha S, Tansel B, Ussawarujikulchai A (2009) Surfactant–soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review. J Environ Manage 90:95–100

    Article  PubMed  CAS  Google Scholar 

  • Lamar RT, White RB, Ashley KC (2002) Evaluation of white-rot fungi for the remediation of creosote-contaminated soil. Remed J 12:97–106

    Article  Google Scholar 

  • Leěstan D, Černileca M, Štrancarb A, Perdiha A (1993) Influence of some surfactants and related compounds on ligninolytic activity of Phanerochaete chrysosporium. FEMS Microbiol Lett 106:17–21

    Article  Google Scholar 

  • Leonardi V, Sasek V, Petruccioli M, D’Annibale A, Erbanova P, Cajthaml T (2007) Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Int Biodeterior Biodegradation 60:165–170

    Article  CAS  Google Scholar 

  • Leonardi V, Giubilei MA, Federici E, Spaccapelo R, Šašek V, Novotny C, Petruccioli M, D’Annibale A (2008) Mobilizing agents enhance fungal degradation of polycyclic aromatic hydrocarbons and affect diversity of indigenous bacteria in soil. Biotechnol Bioeng 101:273–285

    Article  PubMed  CAS  Google Scholar 

  • Liang Y-S, Yuan X-Z, Zeng G-M, Hu C-L, Zhong H, Huang D-L, Tang L, Zhao J-J (2010) Biodelignification of rice straw by Phanerochaete chrysosporium in the presence of dirhamnolipid. Biodegradation 21:615–624

    Article  PubMed  CAS  Google Scholar 

  • Liu XL, Zeng GM, Tang L, Zhong H, Wang RY, Fu HY, Liu ZF, Huang HL, Zhang JC (2008) Effects of dirhamnolipid and SDS on enzyme production from Phanerochaete chrysosporium in submerged fermentation. Process Biochem 43:1300–1303

    Article  CAS  Google Scholar 

  • Majcherczyk A, Johannes C, Huttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22:335–341

    Article  CAS  Google Scholar 

  • Marquez-Rocha FJ, Hernandez-Rodriguez VZ, Vazquez-Duhalt R (2000) Biodegradation of soil-adsorbed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Biotechnol Lett 22:469–472

    Article  CAS  Google Scholar 

  • Meulenberg R, Rijnaarts HHM, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45–49

    Article  PubMed  CAS  Google Scholar 

  • Moeder M, Cajthaml T, Koeller G, Erbanová P, Šašek V (2005) Structure selectivity in degradation and translocation of polychlorinated biphenyls (Delor 103) with a Pleurotus ostreatus (oyster mushroom) culture. Chemosphere 61:1370–1378

    Article  PubMed  CAS  Google Scholar 

  • Moen MA, Hammel KE (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961

    PubMed  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  PubMed  CAS  Google Scholar 

  • Novotny C, Svobodová K, Erbanova P, Cajthaml T, Kasinath A, Lang E, Sasek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551

    Article  CAS  Google Scholar 

  • Pannu JK, Singh A, Ward OP (2004) Vegetable oil as a contaminated remediation amendment: application of peanut oil for extraction of polycyclic aromatic hydrocarbons. Process Biochem 39:1211–1216

    Article  CAS  Google Scholar 

  • Pérez J, Muñoz-Dorado J, Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  PubMed  Google Scholar 

  • Pizzul L, del Pilar CM, Stenstrom J (2007) Effect of rapeseed oil on the degradation of polycyclic aromatic hydrocarbons in soil by Rhodococcus wratislaviensis. Int Biodeter Biodegr 59:111–118

    Article  CAS  Google Scholar 

  • Putcha RV, Domach MM (1993) Fluorescence monitoring of polycyclic aromatic hydrocarbon biodegradation and effect of surfactants. Environ Prog 12:81–85

    Article  CAS  Google Scholar 

  • Reese ET, Maguire A (1969) Surfactants as stimulants of enzyme production by microorganisms. Appl Microbiol 17:242–245

    PubMed  CAS  Google Scholar 

  • Rosen MJ (1989) Surfactants and interfacial phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Aguilar GML, Fernández-Sánchez JM, Rodríguez-Vázquez R, Poggi-Varaldo H (2002) Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Adv Environ Res 6:559–568

    Article  Google Scholar 

  • Rüttimann-Johnson C, Lamar RT (1996) Binding of pentachlorophenol to humic substances in soil by the action of white rot fungi. Soil Biol Biochem 29:1143–1148

    Article  Google Scholar 

  • Šašek V (2003) Why mycoremediations have not yet come into practice. In: Šašek V et al (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer, Amsterdam, pp 247–266

    Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    Article  CAS  Google Scholar 

  • Shi J-G, Zeng G-M, Yuan X-Z, Dai F, Liu J, Wu X-H (2006) The stimulatory effects of surfactants on composting of waste rich in cellulose. World J Microbiol Biotechnol 22:1121–1127

    Article  CAS  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  PubMed  CAS  Google Scholar 

  • Stelmack PL, Gray MR, Pickard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65:163–168

    PubMed  CAS  Google Scholar 

  • Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179

    Article  CAS  Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263

    PubMed  CAS  Google Scholar 

  • Tomati U (2001) A European regulation about olive mill waste industry. In: Proceedings of 11th international symposium on environmental pollution and its impact in the Mediterranean region, Cyprus, 6–10 October 2001, p C5

    Google Scholar 

  • Tribak M, Ocampo JA, García-Romera I (2002) Production of xyloglucanolytic enzymes by Trichoderma viride, Paecilomyces farinosus, Wardomyces inflatus, and Pleurotus ostreatus. Mycologia 94:404–410

    Article  PubMed  CAS  Google Scholar 

  • Tyson GW, Banfield JF (2005) Cultivating the uncultivated: a community genomics perspective. Trends Biotechnol 13:411–415

    CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    Article  PubMed  Google Scholar 

  • Viney I, Bewley RJF (1990) Preliminary studies on the development of a microbiological treatment for polychlorinated biphenyls. Arch Environ Contam Toxicol 19:789–796

    Article  PubMed  CAS  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    Article  CAS  Google Scholar 

  • Wang P, Hu X, Cook S, Begonia M, Lee KS, Hwang H-M (2008) Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World J Microbiol Biotechnol 24:2205–2212

    Article  Google Scholar 

  • Wardle KS, Schisler LC (1969) The effect of various lipids on growth of mycelium of Agaricus bisporus. Mycologia 61:305–314

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Katayama S, Enoki M, Honda Y, Kuwahara M (2001) Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Ceriporiopsis subvermispora and Bjerkandera adusta. Eur J Biochem 267:4222–4231

    Article  Google Scholar 

  • Welp G, Bruemmer GW (1999) Effects of organic pollutants on soil microbial activity: the influence of sorption, solubility and speciation. Ecotoxicol Environ Safety 43:83–90

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Ju LK (1998) Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol Prog 14:649–652

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka R, Soares CF, Matheus DR, Machado KMG (2008) Lignolytic enzymes produced by Trametes villosa CCB176 under different culture conditions. Braz J Microbiol 39:78–84

    Article  Google Scholar 

  • Yap CL, Gan S, Ng HK (2010) Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils. J Hazard Mater 177:28–41

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Obbard JP (2001) Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium. J Chem Technol Biotechnol 76:423–429

    Article  CAS  Google Scholar 

  • Zheng Z, Obbard JP (2002a) Removal of polycyclic aromatic hydrocarbons from soil using surfactant and the white rot fungus Phanerochaete chrysosporium in a rotating biological contactor. J Biotechnol 96:241–249

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Obbard JP (2002b) Polycyclic aromatic hydrocarbon removal from soil by surfactant Solubilization and Phanerochaete chrysosporium oxidation. J Environ Qual 31:1842–1847

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Weiying J, Juan D, Xingding Z, Shixiang G (2007) Effect of Tween 80 and β-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by white rot fungi. Chemosphere 70:172–177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Financial support of this work was partially provided by the Italian Ministry of Education and University (MIUR) within the Project PRIN 2008 “Response analysis to heavy metals and polychlorobiphenyls of Pleurotus ostreatus planktonic cultures and its mono-specific and mixed biofilms”. The authors wish to thank Prof. Federico Federici for helpful suggestions and the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Petruccioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’Annibale, A., Federici, E., Petruccioli, M. (2013). Effect of Mobilising Agents on Mycoremediation of Soils Contaminated by Hydrophobic Persistent Pollutants. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_17

Download citation

Publish with us

Policies and ethics