Skip to main content

Upscaling the Biogeochemical Role of Arbuscular Mycorrhizal Fungi in Metal Mobility

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

In this chapter, we introduce a concept relating the biogeochemical role of microorganisms explicitly to cross-scale effects in the frame of an approach we termed objective scale integrated biogeochemistry. By objective, we mean that the scale of analyses is that of the environmental objects involved in the cycling and is not assumed a priori based on human (institutional) interests. By integrated, we refer to the consideration of multielement fluxes (of nutrients and toxic elements) through the biotic and abiotic compartments controlling productivity of the system. After a critical analysis of the knowledge on arbuscular mycorrhizal fungi (AMF) relevant for estimating their biogeochemical role in the mobility of metals, we propose a methodology for characterizing this role and underline the practical limitations linked to current state of knowledge concerning AMF. These limitations are due to basic issues such as estimating the dimension of a physiological individual, the size in space of a population of AMF, and the species diversity of AMF in the hyphal compartment. We then focus on an example of myco-/phytoremediation using selected plants and commercial inocula. A multi-scale (pot, lysimeter, field plot) experimental approach for studying the biogeochemical role of AMF in metal mobility was developed, tackling scale-specific issues. The main findings of the operational research program are summarized.

The contribution of the first two authors to the writing of this chapter was equal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adriano DC (2001) Trace elements in the terrestrial environments. Biogeochemistry, bioavailability, and risks of heavy metals, 2nd edn. Springer, New York

    Google Scholar 

  • Ahmed FRS, Killham K, Alexander I (2006) Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 258:33–41

    Article  CAS  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, San Diego, CA

    Google Scholar 

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297

    Article  Google Scholar 

  • Allen MF (2009) Bidirectional water flows through the soil–fungal–plant mycorrhizal continuum. New Phytol 182:290–293

    Article  PubMed  Google Scholar 

  • Allen MF (2010) Dynamics of arbuscular mycorrhizae through drought cycles: restoring functional arid land ecosystems. In: COST870 meeting in Jyvaskyla, 13–15 December, Book of abstracts, p 13

    Google Scholar 

  • Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol 41:271–303

    Article  PubMed  CAS  Google Scholar 

  • Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9:420–433

    Article  PubMed  CAS  Google Scholar 

  • Audet P, Charest C (2007a) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ Pollut 147:609–614. doi:10.1016/j.envpol.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  • Audet P, Charest C (2007b) Heavy metal phytoremediation from a meta-analytical perspective. Environ Pollut 147:231–237. doi:10.1016/j.envpol.2006.08.011

    Article  PubMed  CAS  Google Scholar 

  • Audet P, Charest C (2008) Allocation plasticity and plant-metal partitioning: meta-analytical perspectives in phytoremediation. Environ Pollut 156:290–296. doi:10.1016/j.envpol.2008.02.010

    Article  PubMed  CAS  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Babula P, Adam V, Apatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213

    Article  CAS  Google Scholar 

  • Bafeel SO (2008) Contribution of mycorrhizae in phytoremediation of lead contaminated soils by Eucalyptus rostrata plants. World Appl Sci J 5:490–498

    Google Scholar 

  • Banks MK, Schwab AP, Fleming GR, Hetrick BA (1994) Effects of plants and soil microflora on leaching of zinc from mine tailings. Chemosphere 29:1691–1699

    Article  CAS  Google Scholar 

  • Barea JM, Werner D, Azcón-Guilar C, Azcón R (2005) Interactions of arbuscular mycorrhiza and nitrogen-fixing symbiosis in sustainable agriculture. In: Werner D and Newton WE (eds.), Nitrogen Fixation in Agriculture, Forestry Ecology and the Environment, Volume 4, Springer. pp. 199–222

    Article  Google Scholar 

  • Bareen F, Nazir A (2010) Metal decontamination of tannery solid waste using Tagetes patula in association with saprobic and mycorrhizal fungi. Environmentalist 30:45–53

    Article  Google Scholar 

  • Barua A, Gupta SD, Mridha MAU, Bhuiyan MK (2010) Effect of arbuscular mycorrhizal fungi on growth of Gmelina arborea in arsenic-contaminated soil. J Forest Res 21:423–432

    Article  CAS  Google Scholar 

  • Berta G, Fusconi A, Hooker JE (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: from genes to bioproducts. Birkhauser, Basel, pp 71–85

    Chapter  Google Scholar 

  • Biró I, Takács T (2007) Effects of Glomus mosseae strains of different origin on plant macro- and micronutrients uptake in Cd-polluted and unpolluted soils. Acta Agronomica Hungarica 55(2):183–192. doi:10.1556/AAgr.55.2007

    Article  Google Scholar 

  • Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  PubMed  CAS  Google Scholar 

  • Brar SK, Verma M, Surampalli RY, Misra K, Tyagi RD, Meunier N, Blais JF (2006) Bioremediation of hazardous wastes – a review. Pract Period Hazard Toxic Radioact Waste Manag 10:59–73

    Article  CAS  Google Scholar 

  • Cairney JWG (2000) Evolution of mycorrhiza systems. Naturwissenschaften 87:467–475

    Article  PubMed  CAS  Google Scholar 

  • Carbonell AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH Jr (1998) Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci Total Environ 217:189–199

    Article  CAS  Google Scholar 

  • Carrasco L, Gattinger A, Flieβbach A, Roldán A, Schloter M, Caravaca F (2009) Estimation by PLFA of microbial community structure associated with the rhizosphere of Lygeum spartum and Piptatherum miliaceum growing in semiarid mine Tailings. Microb Ecol 60:265–271

    Article  PubMed  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations. Rev Plant Soil 304:315–325

    Article  CAS  Google Scholar 

  • Chaudhary VB, Lau MK, Johnson NC (2008) Macroecology of microbes – biogeography of the glomeromycota. In: Varma A (ed) Mycorrhiza: genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Heidelberg, pp 529–563

    Google Scholar 

  • Chen B, Shen H, Li X, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261:219–229

    Article  CAS  Google Scholar 

  • Chen B, Jakobsen I, Roos P, Borggaard OK, Zhu YG (2005a) Mycorrhiza and root hairs enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytol 165:591–598

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Thang X, Zhu Y, Christie P (2005b) Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation. Sci China C Life Sci 48(Suppl I):156–164

    PubMed  CAS  Google Scholar 

  • Chen X, Wu CH, Tang JJ, Hu SJ (2005c) Arbuscular mycorrhizae enhance metal uptake and growth of host plants under a sand culture experiment. Chemosphere 60:665–671

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Sun L, Chao L, Zhou Q, Sun T (2009) Estimation of lead bioavailability in smelter contaminated soils by single and sequential extraction procedure. Bull Environ contam Toxicol 82:43–47

    Article  PubMed  CAS  Google Scholar 

  • Chern ECW, Tsai AI, Gunseitan OA (2007) Deposition of glomalin related soil protein and sequestered toxic metals into watersheds. Environ Sci Technol 41:3566–3572

    Article  PubMed  CAS  Google Scholar 

  • Christie P, Li X, Chen B (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217, Kluwer Academic Publishers. Printed in the Netherlands

    Article  CAS  Google Scholar 

  • Davies FT Jr, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). Plant Physiol 158:777–786

    Article  CAS  Google Scholar 

  • de Andrade SAL, da Silveira APD (2008) Mycorrhiza influence on maize development under Cd stress and P supply. Braz J Plant Physiol 20(1):39–50

    Google Scholar 

  • Dudley LM, Ben-Gal A, Shani U (2008) Influence of plant, soil, and water on the leaching fraction. Vadose Zone J 7:420–425

    Article  Google Scholar 

  • Dusek J, Vogel T, Lubomir L, Cipakova A (2010) Short-term transport for cadmium during a heavy-rain event simulated by a dual-continuum approach. J Plant Nutr Soil Sci 173:536–547

    Article  CAS  Google Scholar 

  • Estaún V, Cortés A, Velianos K, Camprubí A, Calvet C (2010) Effect of chromium contaminated soil on arbuscular mycorrhizal colonisation of roots and metal uptake by Plantago lanceolata. Span J Agric Res 8(S1):S109–S115, ISSN: 1695-971-X

    Google Scholar 

  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60. doi:10.1111/j.1469-8137,1993.tb03796.x

    Article  CAS  Google Scholar 

  • Gadd MG (2005) Microorganisms in toxic metal-polluted soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions, vol 3, Soil biology. Springer, Berlin, pp 325–356

    Chapter  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 3:3–49

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  PubMed  CAS  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    Article  PubMed  CAS  Google Scholar 

  • Gange AC, Brown VK, Sinclair GS (1993) Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct Ecol 7:616–622

    Article  Google Scholar 

  • Garg N, Chandel S (2011) Arbuscular mycorrhizal networks: process and functions. In: Lichtfouse E et al (eds) Sustainable agriculture, Vol 2, Springer, Dordrecht, pp 907–930

    Google Scholar 

  • Gehring C, Bennett A (2009) Mycorrhizal fungal-plant-insect interactions: the importance of a community approach. Environ Entomol 38:93–102

    Article  PubMed  Google Scholar 

  • Giasson P, Karam A, Jaouich A (2008) Arbuscular mycorrhizae and alleviation of soil stresses. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 99–134, ISBN: 978-1-4020-8769-1, e-ISBN: 978-1-4020-8770-7

    Chapter  Google Scholar 

  • Glass NL, Rasmussen C, Roca G, Read ND (2004) Hyphal homing, fusion and mycelia interconnectedness. Trends Microbiol 12:135–141

    Article  PubMed  CAS  Google Scholar 

  • Glosh M, Sigh SP (2005) Comparative uptake and phytoextraction study of soil induced chromium by accumulator and high biomass weed species. Appl Ecol Environ Res 3:67–79

    Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Goltapeh EM, Danesh YR, Prasad R, Varma A (2008) Mycorrhizal fungi: what we know and what should we know? In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 3–28

    Chapter  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols K (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323. doi:10.1016/j.envpol.2004.01.004

    Article  PubMed  CAS  Google Scholar 

  • Graham JH (2008) Scaling up evaluation of field functioning of arbuscular mycorrhizal fungi. New Phytol 180:1–2

    Article  PubMed  Google Scholar 

  • Halabuck A (2006) Influence of different vegetation types on saturated hydraulic conductivity in alluvial topsoils. Biologia 61(S19):S266–S269

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2001) Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93:1186–1194

    Article  Google Scholar 

  • Hartmann A, Schmid M, Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Heijden van der MG (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163–1171

    Google Scholar 

  • Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmström S, Landeweert R, Lundström US, Rosling A, Sen R, Smits MM, van Hees PA, van Breemen N (2004) The role of fungi in weathering. A review. Front Ecol Environ 2:258–264

    Article  Google Scholar 

  • Hullebusch van ED, Lens PNL, Tabak HH (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bio-processes. Rev Environ Sci Biotechnol 4:185–212

    Google Scholar 

  • Iordache V, Neagoe A, Bergman H (2004) Effects of mycorrhization of Phacelia tanacetifolia on metals accumulation and oxidative stress. Proceedings of the 5th international symposium on “metal elements in environment, medicine and biology”, Timisoara, pp 105–113

    Google Scholar 

  • Iordache V, Neagoe A, Bergman H, Kothe E, Buechel G (2006) Factors influencing the export of metals by leaching in bioremediation experiments. 23. Arbeitstagung in Jena, Agricultural, biological, environmental, nutritional and medical importance of macro, trace and ultra trace elements, Friedrich Schiller Universität, pp 288–295

    Google Scholar 

  • Iordache V, Kothe E, Neagoe A, Gherghel F (2011) A conceptual framework for up-scaling ecological processes and application to ectomycorrhizal fungi. In: Rai M, Varma A (eds) Diversity and biotechnology of ectomycorrhizae. Springer, Berlin, pp 255–299

    Chapter  Google Scholar 

  • Iordache V, Lăcătusu R, Scrădeanu D, Onete M, Jianu D, Bodescu F, Neagoe A, Purice D, Cobzaru I (2012) Contributions to the theoretical foundations of integrated modeling in biogeochemistry and their application in contaminated areas. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils, vol 31, Soil biology. Springer, Berlin, pp 385–416

    Chapter  Google Scholar 

  • Jakobsen I (2004) Hyphal fusion to plant species connections – giant mycelia and community nutrient flow. New Phytol 164:4–7

    Article  Google Scholar 

  • Janoušková M, Pavlíková D (2010) Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant Soil 332:511–520. doi:10.1007/s11104-010-0317-2

    Article  CAS  Google Scholar 

  • Janoušková M, Pavlíková D, Vosátka M (2006) Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65:1959–1965

    Article  PubMed  CAS  Google Scholar 

  • Jansa J, Finlay R, Wallander H, Smith FA, Smith SE (2011) Role of mycorrhizal symbioses in phosphorus cycling. In: Bunemann EK et al (eds) Phosphorus in action, vol 26, Soil biology. Springer, Berlin, pp 137–168

    Chapter  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  PubMed  CAS  Google Scholar 

  • Johnson CN, Hoeksema JD, Bever JD, Chaudhary VB, Gehring C, Klironomos J, Koide R, Miller RM, Moore J, Moutoglis P, Schwartz M, Simard S, Swenson W, Umbanhowar J, Wilson G, Zabinski C (2006) From lilliput to brobdingnag: extending models of mycorrhizal function across scales. Bioscience 56:889–900

    Article  Google Scholar 

  • Joner EJ, Leyval C (2009) Phytoremediation of organic pollutants using mycorrhizal plants: a new aspect of rhyzosphere interactions. In: Lichtfouse E et al (eds) Sustainable agriculture, vol Part 7. Springer, New York, pp 885–894

    Chapter  Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption – an alternative treatment option for heavy metal bearing wastewater. A review. Bioresour Technol 53:195–206

    CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  PubMed  CAS  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation – an enhanced from of phytoremediation. Review. J Zhejiang Univ Sci B 7:503–514

    Article  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  • Kothe E, Bergmann H, Büchel G (2005) Molecular mechanism in bio-geo-interactions: from a case study to general mechanisms. Chem Erde 65(S1):7–27

    Article  CAS  Google Scholar 

  • Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils. A review. Environ Pollut 153:497–522

    Article  PubMed  CAS  Google Scholar 

  • Lebeau T, Jezequel K, Braud A (2011) Bioaugmentation-assisted phytoextraction applied to metal-contaminated soils: state of the art and future prospects. In: Ahmad I et al (eds) Microbes and microbial technology: agricultural and environmental applications. Springer, New York. doi:10.1007/978-1-4419-7931-5_10

    Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (as hyperaccumulator) in as contaminated soils. Environ Pollut 139:1–8

    Article  PubMed  CAS  Google Scholar 

  • Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Ginanazzi S et al (eds) Mycorrhizal technology in agriculture. Birkhauser, Basel, pp 175–186

    Chapter  Google Scholar 

  • Lilleskov EA, Parrent JL (2007) Can we develop general predictive models of mycorrhizal fungal community-environment relationships? New Phytol 174:250–256

    Article  PubMed  CAS  Google Scholar 

  • Liu W (2010) Do genetically modified plants impact arbuscular mycorrhizal fungi? Ecotoxicology 19:229–338

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in a spiked soil under greenhouse conditions. Environ Int 31:867–873

    Article  PubMed  CAS  Google Scholar 

  • Luck GW, Daily GC, Ehrlich PR (2003) Population diversity and ecosystem services. Trends Ecol Evol 18:331–336

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889 pp

    Google Scholar 

  • Martino E, Perotto S (2010) Mineral transformations by mycorrhizal fungi. Geomicrobiol J 27:609–623

    Article  CAS  Google Scholar 

  • Mathur N, Bohra JSS, Quaizi A, Vyas A (2007) Arbuscular mycorrhizal fungi: a potential tool for phytoremediation. J Plant Sci 2:127–140

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  CAS  Google Scholar 

  • Mehard AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:70–102

    Google Scholar 

  • Mikkelsen BL, Rosendahl S, Jakobsen I (2008) Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol 180:890–898

    Article  PubMed  Google Scholar 

  • Miller RM, Kling M (2000) The importance of integration and scale in the arbuscular mycorrhizal symbiosis. Plant Soil 226:295–309

    Article  CAS  Google Scholar 

  • Moore JC, McCann K, Setala H, De Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857

    Article  Google Scholar 

  • Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Neagoe A, Mascher R, Iordache V, Voigt K, Knoch B, Bergmann H (2004) The influence of vesicular arbuscular mycorrhiza Glomus intraradiceae on mustard (Sinapis alba L.) grown on a soil contaminated with heavy metals. 22. Arbeitstagung in Jena, Lebensnotwendigkeit und Toxizität der Mengen-, Spuren- und Ultraspurenelemente, Friedrich Schiller Universität, pp 597–606

    Google Scholar 

  • Neagoe A, Ebenå G, Carlsson E (2005) The effect of soil amendments on plant performance in an area affected by acid mine drainage. Chem Erde 65:115–129

    Article  CAS  Google Scholar 

  • Neagoe A, Iordache V, Mascher R, Knoch B, Kothe E, Bergmann H (2006) Lysimeters experiment using soil from a heavy metals contaminated area. 23. Arbeitstagung in Jena, Agricultural, biological, environmental, nutritional and medical importance of macro, trace and ultra trace elements, Friedrich Schiller Universität, pp 568–575

    Google Scholar 

  • Neagoe A, Merten D, Iordache V, Buechel G (2009) The effect of bioremediation methods involving different degrees of soil disturbance on the export of metals by leaching and by plant uptake. Chem Erde 69:57–73

    Article  CAS  Google Scholar 

  • Neagoe A, Iordache V, Kothe E (2010) Effects of the inoculation with AM fungi on plant development and oxidative stress in areas contaminated with heavy metals. Presentation at COST870 meeting in Jyvaskyla, 13–15 December, Book of abstracts, p 22

    Google Scholar 

  • Neagoe A, Iordache V, Farcasanu IC (2012) The role of organic matter in the mobility of metals in contaminated catchments. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils, vol 31, Soil biology. Springer, Berlin, pp 297–326

    Chapter  Google Scholar 

  • Neumann E, Schmid B, Römheld V, George E (2009) Extraradical development and contribution to plan performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying. Mycorrhiza 20:13–23

    Article  PubMed  Google Scholar 

  • Nicoara A, Neagoe A, Donciu R, Iordache V (2010) The effects of mycorrhizal fungi, streptomycetes and plants on heavy metal mobility and bioaccumulation in an industrially enriched soil: preliminary results of a lysimeter experiment. In: Proceedings of the 10th international symposium on “metal elements in environment, medicine and biology”, Timisoara, November 2010

    Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649

    Article  PubMed  CAS  Google Scholar 

  • Piotrowski JS, Rillig MC (2008) Succession of arbuscular mycorrhizal fungi: patterns, causes and considerations for organic agriculture. Adv Agron 97:111–130

    Article  CAS  Google Scholar 

  • Piotrowski JS, Lekberg Y, Harner MJ, Ramsey PW, Rillig MC (2008) Dynamics of mycorrhizae during development of riparian forests along an unregulated river. Ecography 31:245–253

    Article  Google Scholar 

  • Rashid A, Ayub N, Ahmad T, Gul J, Khan AG (2009) Phytoaccumulation prospects of cadmium and zinc by mycorrhizal plant species growing in industrially polluted soils. Environ Geochem Health 31:91–98. doi:10.1007/s10653-008-9159-8

    Article  PubMed  CAS  Google Scholar 

  • Redon PO, Béguiristain T, Leyval C (2008) Influence of Glomus intraradices on Cd partitioning in a pot experiment with Medicago truncatula in four contaminated soils. Soil Biol Biochem 40:2710–2712. doi:10.1016/j.soilbio.2008.07.018

    Article  CAS  Google Scholar 

  • Regvar M, Likar M, Piltaver A, Kugonič N, Smith JE (2010) Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant Soil 330:345–356

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  • Rillig MC, Mammey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussane JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Rosén K, Weiliang Z, Mårtensson A (2005) Arbuscular mycorrhizal fungi mediated uptake of Cs in leek and ryegrass. Sci Total Environ 338:283–290

    Article  PubMed  CAS  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266

    Article  PubMed  Google Scholar 

  • Rosling A, Roose T, Herrmann AM, Davidson FA, Finlay RD, Gadd GM (2009) Approaches to modeling mineral weathering by fungi. Fungal Biol Rev 23:138–144

    Article  Google Scholar 

  • Rowe HI, Brown CS, Claassen VP (2007) Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native Montane species and Bromus tectorum. Restor Ecol 15:44–52

    Article  Google Scholar 

  • Rufyikiri G, Declerck S, Thiry Y (2004) Comparison of 233U and 33P uptake and translocation by the arbuscular mycorrhizal fungus Glomus intraradices in root organ culture conditions. Mycorrhiza 14:203–207

    Article  PubMed  Google Scholar 

  • Sampedro I, Aranda E, Díaz R, García-Sanchez M, Ocampo JA, García-Romera I (2008) Saprobe fungi decreased the sensitivity to the toxic effect of dry olive mill residue on arbuscular mycorrhizal plants. Chemosphere 70:1383–1389

    Article  PubMed  CAS  Google Scholar 

  • Sanon A, Martin P, Thioulouse J, Plenchette C, Spichigeer R, Lepage M, Duponnois R (2006) Displacement of an herbaceous plant species community by mycorrhizal and non-mycorrhizal Gmelina arborea, an exotic tree, grown in a microcosm experiment. Mycorrhiza 16:125–132

    Article  PubMed  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London, 605 pp

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Soares CRFS, Siqueira JO (2008) Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fertil Soils 44:833–841

    Article  CAS  Google Scholar 

  • Stancu P, Neagoe A, Jianu D, Iordache V, Nicoarǎ A, Donciu R (2010) Testing phytoremediation methods for the zlatna tailing dams, Romania. In: Proceedings fot the 10th international symposium on “metal elements in environment, medicine and biology”, Timisoara, November 2010

    Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  PubMed  CAS  Google Scholar 

  • Tobin JM, White C, Gadd GM (1994) Metal accumulation by fungi – applications in environmental biotechnology. J Ind Microbiol 13:126–130

    Article  CAS  Google Scholar 

  • Toler HD, Morton JB, Cumming JR (2005) Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water Air Soil Pollut 164:155–172

    Article  CAS  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am 71:1257–1266

    Article  CAS  Google Scholar 

  • Turnau K (1998) Heavy metal uptake and arbuscular mycorrhiza development of Euphorbia cyparissias on zinc wastes in South Poland. Acta Soc Bot Pol 67:105–113

    CAS  Google Scholar 

  • Turnau K, Dexheimer J (1995) Acid phosphatase activity in Pisolithus arrhizus mycelium treated with cadmium dust. Mycorrhiza 5:205–211

    Article  CAS  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  PubMed  Google Scholar 

  • Turnau K, Orlowska E, Ryszka P, Zubek S, AnielskaT GS, Jurkiewicz A (2006) Role of mycorrhizal fungi in phytoremediation and toxicity monitoring of heavy metal rich industrial wastes in southern Poland. In: Twardowska I et al (eds) Soil and water pollution monitoring, protection and remediation. Springer, Dordrecht, pp 3–23

    Google Scholar 

  • Turnau K, Ryszka P, Wojtczak G (2010) Metal tolerant mycorrhizal plants: a review from the perspective on industrial waste in temperate region. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizal: physiology and function, vol Part 4. Springer, Heidelberg, pp 257–276

    Chapter  Google Scholar 

  • Ultra VUY Jr, Tanaka S, Sakurai K, Iwasaki K (2007) Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.). Soil Sci Plant Nutr 53:499–508

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Van Keulen H, Cutright T, Wei R (2008) Arsenate-induced expression of a class III chitinase in the dwarf sunflower Helianthus annuus. Environ Exp Bot 63:281–288

    Article  CAS  Google Scholar 

  • Visan L, Sandu R, Iordache V, Neagoe A (2008) Influence of microorganisms community structure on the rate of metals percolation in soil. Analele stiintifice ale UAIC 53:79–88

    Google Scholar 

  • Wang F, Lin X, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and potential for phytoremediation of contaminated soil. Plant Soil 269:225–232

    Article  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Wolfe BE, Parrent JL, Koch AM, Sikes BA, Gardes M, Klironomos JN (2009) Spatial heterogeneity of mycorrhizal populations and communities: scales and mechanisms. In: Azcón-Aguilar C et al (eds) Mycorrhizas – functional processes and ecological impact. Springer, Berlin, pp 167–186

    Chapter  Google Scholar 

  • Young JPW (2009) Kissing cousins. New Phytol 181:751–753

    Article  PubMed  Google Scholar 

  • Yu Y, Zhanh S, Huang H (2010) Behavior of mercury in a soil-plant system as affected by inoculation with the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 20:407–414

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Lin A, Chen B, Wang Y, Smith FA (2006) Effect of Glomus mosseae on the toxicity of heavy metals to Vicia faba. J Environ Sci 18(4):721–726

    CAS  Google Scholar 

Download references

Acknowledgments

We warmly thank Prof. Dr. Younes Rezaee Danesh who invited us to write the present chapter for this book and the reviewers for constructive criticism. The theoretical research presented here was done with financing from National University Research Council (CNCSIS) by project 291/2007 MECOTER, from National Center for the Management of Projects (CNMP) by projects 52175/2008 METAGRO, and in the international consortium of the FP7 project UMBRELLA, grant agreement 226870.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Neagoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neagoe, A., Iordache, V., Kothe, E. (2013). Upscaling the Biogeochemical Role of Arbuscular Mycorrhizal Fungi in Metal Mobility. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_13

Download citation

Publish with us

Policies and ethics