Skip to main content

Enhanced Productivity Associated with Tripartite Symbiosis Between Phaseolus, Rhizobia, and Piriformospora indica: In Presence of Vermicompost

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 33))

Abstract

Phaseolus bean has potential to establish symbiosis with rhizobia and mycorrhizal fungi for its nitrogen nutrition and uptake of phosphorus from the soil, respectively. This benefit to the plant can be further enhanced by incorporating nutrient-rich vermicompost in the soil. The tripartite symbiosis of Phaseolus bean with rhizobia and Piriformospora indica in presence of vermicompost was assessed by plant growth, productivity, mycorrhizal colonization, and nitrogen, phosphorous, and potassium (NPK) content of plant. The length and weight of shoot and root were highest during harvesting stage in the rhizobia and P. indica-inoculated plant supplemented with vermicompost compared to single inoculation. Similarly, the NPK uptake and mycorrhizal colonization was highest in dual inoculation in presence of vermicompost. Incorporation of vermicompost is beneficial for the growth of the plant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya MS (1997) Integrated vermiculture for rural development. Int J Rural Stud 4:8–10

    Google Scholar 

  • Albiach R, Canet R, Pomares F, Ingelmo F (2000) Microbial biomass content and enzymatic activities after application of organic amendments to a horticultural soil. Bioresour Technol 75:43–48

    Article  CAS  Google Scholar 

  • Antunes PM, Rajcan I, Goss MJ (2006) Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum (Kirchner) Jordan and soybean (Glycine max L. Merrill.). Soil Biol Biochem 38:533–543

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (2000) Biogeochemical cycling. In: Earl W, Fogel L, Wong G (eds) Microbial ecology: fundamentals and applications. 4th edn. Pearson Education Asia, pp 417

    Google Scholar 

  • Azcon R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (15 N) and nutrition of Medicago sativa L. New Phytol 117:339–404

    Article  Google Scholar 

  • Bagyaraj DJ, Varma A (1995) Interaction between arbuscular mycorrhizal fungi and plants and their importance in sustainable agriculture in arid and semi-arid tropics. Adv Microbial Ecol 14:119–142

    Article  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Correa JD, Barrios ML, Galdona RP (2004) Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266:75–84

    Google Scholar 

  • Edwards CA, Burrows I (1988) The potential of earthworm compost as plant growth media. In: Neuhauser E, Edwards CA (eds) Earthworms in waste and environmental management. SPB Academic, The Hague, Netherlands, pp 21–32

    Google Scholar 

  • Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Buttner C, Grosch R, Schwarz D, Franken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20:191–200

    Article  PubMed  Google Scholar 

  • Gunawardena SFBN, Danso SKA, Zapata F (1992) Phosphorus requirement and nitrogen accumulation by three mungbean (Vigna radiata (L.) Wilczek cultivars. Plant Soil 147:267–274

    Article  CAS  Google Scholar 

  • Harrison MJ, Buuren L, Van M (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:26–29

    Article  Google Scholar 

  • Hayman DS, Stovold GE (1979) Plant growth response to vesicular arbuscular mycorrhiza. New Phytol 71:41–47

    Article  Google Scholar 

  • Hellsten A, Huss-Danell K (2001) Interaction effects of nitrogen and phosphorus on nodulation in red clover (Trifolium pratense L.) Acta Agriculturae Scandinavica Section. Soil Plant Sci 80:135–142

    Google Scholar 

  • Hidalgo P (1999) Earthworm castings increase germination rate and seedling development of cucumber. Mississippi Agricultural and Forestry Experiment Station, Research report 22:141–150

    Google Scholar 

  • Holford ICR (1997) Soil phosphorus: its measurement and its uptake by plants. Aust J Soil Res 35:227–239

    Article  CAS  Google Scholar 

  • Jakobsen I, Abbot LK, Robson AP (1992) External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.I. spread of hyphae and phosphorous inflow in roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jia Y, Gray VM, Straker CJ (2004) The influence of rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258

    Article  PubMed  CAS  Google Scholar 

  • Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81–86

    Article  CAS  Google Scholar 

  • Kale RD, Mallesh BC, Bano K, Bagyaraj DJ (1992) Influence of vermicompost application on the available macronutrients and selected microbial populations in a paddy field. Soil Biol Biochem 24:700–702

    Article  Google Scholar 

  • Manjunath A, Bagyaraj DJ, Gopala Gowda HS (1984) Dual inoculation with VA mycorrhiza and Rhizobium is beneficial to Leucaena. Plant Soil 78:445–448

    Article  Google Scholar 

  • Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17

    Article  Google Scholar 

  • Pashanasi B, Lavelle P, Alegre J, Charpentier F (1996) Effect of the endogeic earthworm, Pontoscolex corethrurus on soil chemical characteristics and plant growth in a low-input tropical agro-ecosystem. Soil Biol Biochem 28:801–808

    Article  CAS  Google Scholar 

  • Rai M, Varma A (2005) Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees. Electronic J Biotech 8:107–110

    Google Scholar 

  • Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Article  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Sallaku G, Babaj I, Kaciu S, Balliu A (2009) The influence of vermicompost on plant growth characteristics of cucumber (Cucumis sativus L.) seedlings under saline conditions. J Food Agric Environ 7:869–872

    Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  PubMed  CAS  Google Scholar 

  • Shalaby AM, Hanna MM (1998) Preliminary study in interaction between VA mycorrhizal fungus Glomus mosseae, Bradyrhizobium japonicum and Pseudomonas syringae in soybean plants. Aeca Microbiologica Polonica 47:385–391

    Google Scholar 

  • Singh A (2004) Immunocharacterization of Piriformospora indica and other identical root endophytes. Ph.D. thesis. Jawaharla Nehru University, New Delhi

    Google Scholar 

  • Sparling GP, Tinker PB (1978) Mycorrhizal in pennine grassland. J Appl Ecol 15:943–950

    Article  Google Scholar 

  • Tajini F, Suriyakup P, Vailhe H, Jansa J, Drevon JJ (2009) Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia. BMC Plant Biol 9:73

    Article  PubMed  Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    PubMed  CAS  Google Scholar 

  • Varma A, Sudha S, Franken P (1999) Piriformospora indica- a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:2741–2744

    PubMed  CAS  Google Scholar 

  • Verma S, Varma A, Rexer KH, Kost G, Sarbhoy A, Bisen P, Butehorn B, Franken P (1998) Piriformospora indica, gen et sp nov, a new root colonizing fungus. Mycologia 95:896–903

    Article  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effect of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181–188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tuladhar, R., Shrestha, J., Singh, A., Varma, A. (2013). Enhanced Productivity Associated with Tripartite Symbiosis Between Phaseolus, Rhizobia, and Piriformospora indica: In Presence of Vermicompost. In: Varma, A., Kost, G., Oelmüller, R. (eds) Piriformospora indica. Soil Biology, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33802-1_11

Download citation

Publish with us

Policies and ethics