Skip to main content

Preview Ride Comfort Control for Electric Active Suspension

  • Conference paper
  • First Online:
Proceedings of the FISITA 2012 World Automotive Congress

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 198))

Abstract

A preview control that acts in accordance with the road surface profile in front of the vehicle has been proposed as a way to enhance ride comfort. Although the effectiveness of this control has been verified, many issues remain to be resolved, including improving the road surface profile estimation accuracy while the vehicle is in motion. Consequently, as a way of enhancing the comfort of the vehicle and reducing energy consumption, this development aimed to construct preview ride comfort control logic capable of estimating road surface displacement more accurately. To improve estimation accuracy, this paper proposes a method of estimating the road surface displacement in front of the vehicle using preview sensors and the body displacement estimated using a full-order observer. It describes sky-hook control logic that performs feed-forward of control amounts proportionally to the lateral road surface displacement. The ride comfort performance in the roll direction and the energy-saving effect of this control was verified using a 4-wheel shaker and in actual driving tests. It was confirmed that the developed control estimates road surface displacement more accurately than the previous control, thereby improving ride comfort at low-frequencies and reducing energy consumption. The result is a more feasible preview control system that has made progress toward the aim of practical application.

F2012-G02-005

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yonekawa T, Onuma T, Mori Y, Goto T, Buma S (1991) Effect of the active control suspension system on vehicle dynamics. JSAE Rev 12(2):40–45

    Google Scholar 

  2. Buma S, Okuma O, Taneda A, Suzuki K, Cho J, Kobayashi Y (2010) Design and development of electric active stabilizer suspension system. J Syst Des Dyn, JSME 4(1):61–76

    Google Scholar 

  3. Nagai M (1990) Fundamentals of vibration control of active suspension. JARI Res J 12(2):41–45

    Google Scholar 

  4. Shono A, Hiraiwa N, Nagiri S, Doi S (1991) Basic study of reducing vehicle vibration by preview control. Proc Soc Automot Eng Jpn 912-3:197–200

    Google Scholar 

  5. Kimura K, Akatsu Y, Tobata H, Fukuyama K (1994) Vehicle vibration control by active suspension using preview control. Trans Soc Automot Eng Jpn 25(3):93–97

    Google Scholar 

  6. Buma S, Kajino H, Takahashi T, Doi S (2008) Consideration of a human dynamic characteristic and performance evaluation of an electric active suspension. AIM (IEEE/ASME)

    Google Scholar 

  7. Kajino H, Buma S, Cho J, Kanda R (2008) Electric active suspension system development with driver’s motion analysis. FISITA, F2008-03-012

    Google Scholar 

  8. Yoshioka K, Buma S, Kanda R, Yahagi T (2010) Study of preview control for electric active suspension. Trans Jpn Soc Mech Eng C 76(770):20–27

    Google Scholar 

  9. Kanda R, Buma S, Cho J, Yoshioka K, Yahagi T (2011) Study of ride comfort control logic for electric active stabilizer suspension system. Trans Soc Automot Eng Jpn 42(2):323–328

    Google Scholar 

  10. ISO2631-1, “Mechanical vibration and shock—evaluation of human exposure to whole-body vibration—Part 1: General requirements (1997)”

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Sugai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sugai, H., Buma, S., Kanda, R., Yoshioka, K., Hasegawa, M. (2013). Preview Ride Comfort Control for Electric Active Suspension. In: Proceedings of the FISITA 2012 World Automotive Congress. Lecture Notes in Electrical Engineering, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33795-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33795-6_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33794-9

  • Online ISBN: 978-3-642-33795-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics