Skip to main content

Sustainable Manufacturing Through Environmentally-Friendly Machining

  • Chapter
  • First Online:
Green Manufacturing Processes and Systems

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

The interest in pollution prevention is continuously growing. This determines several industries, including manufacturing, to develop and implement various environmentally-friendly strategies. Product design, selection of raw materials, manufacturing process, product delivery and reuse or recycling options for products’ end of life have influences for the of environmental degradation level. There is an ongoing search for new and innovative ways by which industry can lessen its impact on the environment. Efforts are currently focused to: efficient consumption of resources and conserve energy, minimize the environmental effects of energy production, improve waste management system. This chapter presents several aspects regarding the environmental impact of manufacturing process and the necessity of changed process for increasing their sustainability and thus, preventing polluting generation. It is mainly focused on investigating various aspects of machining process from an environmental perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CLF:

Cooling lubrication fluids

CM:

Cryogenic machining

DM:

Dry machining

HPJAM:

High pressure jet assisted machining

HSS:

High speed steel

LN:

Liquid nitrogen

NDM:

Near dry machining

MQL:

Minimal quantity lubrication

MQC:

Minimal quantity cooling

References

  1. Gutowski TG (2004) Design and manufacturing for the environment. In: Handbook of mechanical engineering. Springer-Verlag, Berlin

    Google Scholar 

  2. Jawahir IS, Wanigarathne PC, Wang X (2006) Product design and manufacturing processes for sustainability, mechanical engineers’. In: Kutz M (ed) Handbook: manufacturing and management, third edn, vol 3, John Wiley & Sons, Inc.,Delmar, pp 414–439

    Google Scholar 

  3. Dahmal P, Escursell M (2004) High pressure jet-assisted cooling: a new possibility for near net shape turning of decarburized steel. Int J Mach Tools Manuf 44(1):109–115

    Article  Google Scholar 

  4. Dahmus IB, Gutowski TG (2004) An environmental analysis of machining. In: Proceedings of the 2004 ASME IMECE, Anaheim, pp 1–10

    Google Scholar 

  5. Graham I, Dom K (2000) Going dry. Manuf Eng 124(1):72–78

    Google Scholar 

  6. Jawahir IS, Dillon Jr OW (2007) Sustainable manufacturing processes: new challenges for developing predictive models and optimization techniques. In: Proceedings of 1st international conference on sustainable manufacturing SM1, Montreal, pp 1–15

    Google Scholar 

  7. Kundrák J, Mamalis AG, Gyáni K, Markopoulos A (2006) Environmentally friendly precision machining. Mater Manuf Processes 21(1):29–37

    Article  Google Scholar 

  8. Pusavec F, Kramar D, Krajnik P, Kopac J (2010) Transitioning to sustainable production—part II: evaluation of sustainable machining technologies. J Clean Prod 18(12):1211–1221

    Google Scholar 

  9. Rajemi MF, Mativenga PT, Aramcharoen A (2010) Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. J Clean Prod 18(11–12):1059–1065

    Article  Google Scholar 

  10. Kotaiah KR, Srinivas J, Babu KJ, Srinivas K (2010) Prediction of optimal cutting states during inward turning: an experimental approach. Mater Manuf Processes 25(6):432–441

    Google Scholar 

  11. Snig KW, Rummen S (1994) Ecological manufacturing. Production Engineering. German Academic Society Engineering, Berlin, vol 1(2), pp 1–4

    Google Scholar 

  12. American Automobile Manufacturers Association (1995) Industrial metalworking environment: Assessment and control. Dearborn, USA

    Google Scholar 

  13. Byme G, Scholta E (1993) Environmentally clean machining processes—a strategic approach. Annals of CIRP 42(1):471–474

    Google Scholar 

  14. Pfeifer T, Eversheim W, Kanig W, Weck W (1994) Manufacturing excellence: the competitive edge. Chapman and Hall, London

    Google Scholar 

  15. Grzesik W (2008) Dry and semi-dry machining, advanced machining processes of metallic materials (2008), pp 226–245

    Google Scholar 

  16. Aronson RB (1995) Why dry machining? Manuf Eng 114(1):33–36

    Google Scholar 

  17. Kalhofer E (1997) Dry machining principles and applications. In: Proceedings of the 2nd Seminario International de Alta Tecnologia UNIMEP. Julho, Santa Barbara D’Oeste

    Google Scholar 

  18. Davim JP, Sreejith PS, Silva J (2007) Turning of brasses using minimum quantity of lubricant (MQL) and flooded lubricant conditions. Mater Manuf Processes 22(1):45–50

    Google Scholar 

  19. Pusavec F, Kopac J (2009) Achieving and implementation of sustainability principles in machining processes. J Adv Prod Eng Manag 3:151–160

    Google Scholar 

  20. Ahmad-Yazid A, Taha Z, Almanar IP (2010) A review of cryogenic cooling in high speed machining (HSM) of mold and die steels. Sci Res Essays 5(5):412–427

    Google Scholar 

  21. Tan XC, Liu F (2002) A decision-making framework model of cutting fluids selection for green manufacturing. J Mater Process Technol 129:467–470

    Article  Google Scholar 

  22. Weinert K, Inasaki I, Sutherland JW, Wakabayashi T (2004) Dry machining and minimum quantity lubrication. CIRP Ann Manuf Technol 53(2):511–537

    Article  Google Scholar 

  23. Macado AR, Wallbank J (1997) The effect of extremely low lubricant volumes in machining. Wear 210:76–82

    Article  Google Scholar 

  24. Weinert K (1999) Trockenbearbeitung und Minimalmengekuehlschmierung—Einsatz in der spanenden Fertigungstechnik. Springerverlag, Berlin

    Google Scholar 

  25. Hong SY (2001) Economical and ecological cryogenic machining. J Manuf Sci Technol 123:331–338

    Google Scholar 

  26. Su Y, He N, Li L, Iqbal A et al (2007) Refrigerated cooling air cutting of difficult-to-cut materials. Int J Mach Tool Manuf 47:927–933

    Google Scholar 

  27. Pusavec F, Krajnik P, Kopac J (2010) Transition to sustainable production—part I: application on machining technologies. J Clean Prod 18(2):174–184

    Article  Google Scholar 

  28. Courbon C, Kramar D, Krajnik P, Pusavec K, Rech J, Kopac J (2009) Investigation of machining performance in high-pressure jet assisted turning of Inconel718: an experimental study. Int J Mach Tools Manuf 49:1114–1125

    Article  Google Scholar 

  29. Kaebernick H, Kara S, Sun M (2003) Sustainable product development and manufacturing by considering environmental requirements. Robot Comput Integr Manuf 19(6):461–468

    Article  Google Scholar 

  30. Byrne G, Dornfeld D, Denkena B (2003) Advanced cutting technology. Ann CIRP 52(2):483–507

    Article  Google Scholar 

  31. Byrne G, Scholta E (1993) Environmentally clean machining processes—a strategic approach. Ann CIRP 42(1):471–474

    Article  Google Scholar 

  32. Kalpakjian S, Schmid S (2001) Manufacturing engineering and technology, 4th edn, Prentice Hall, Upper Saddle River

    Google Scholar 

  33. Chapman PF, Roberts F (1993) Metal resources and energy. Butterworth and Co., Ltd, Thetford

    Google Scholar 

  34. Environmental Protection Agency (EPA) (1995) Profile of the iron and steel industry. EPA Office of Compliance Sector Notebook Project, EPA/310-R-95-005, Washington

    Google Scholar 

  35. Becket GJP (1994) Corrosion. In: Byers JP (ed) Causes and cures from metalworking fluids. Marcel Dekker Inc., New York

    Google Scholar 

  36. Rossmore LA, Rossmore HW (1994) Metalworking fluid microbiology. In: Byers JP (ed) Metalworking fluids. Marcel Dekker Inc., New York

    Google Scholar 

  37. Childers JC (1994) The chemistry of metalworking fluids. In: Byers JP (ed) Metalworking fluids. Marcel Dekker Inc., New York, pp 165–189

    Google Scholar 

  38. Sherman J, Bain C, Huibers PDT, Garcia-Valls R, Hatton TA (1998) Solvent replacement for green processing. Environ Health Perspect 106(1):253–271

    Article  Google Scholar 

  39. Steen B (1997) On uncertainty and sensitivity of LCA-based priority setting. J Clean Prod 5(4):255–262

    Article  Google Scholar 

  40. Sluhan W (1997) Trample tramp oil. Cut Tool Eng 49(6):87–90

    Google Scholar 

  41. Klocke F, Eisenblatter G (1997) Dry cutting. CIRP Ann Manuf Technol 46(2):519–527

    Article  Google Scholar 

  42. Oberg E, Franklin DJ, Holbrook LH, Ryffel H (1996) Machinery’s handbook. In: Green RE (ed) 25th edn, Industrial Press Inc., New York

    Google Scholar 

  43. Stals LM, Nesladek M, Quaeyhaegens C (1997) Current industrial practice critical issues in hard PVD and PA-CVD coatings. Surf Coat Technol 9:230–239

    Article  Google Scholar 

  44. Lahres M, Jorgensen G (1997) Properties and dry cutting performance of diamond-coated tools. Surf Coat Technol 96:198–204

    Article  Google Scholar 

  45. Kalpakjian S (1995) Manufacturing engineering and technology, 3rd edn. Addison-Wesley Publishing Company, Reading

    Google Scholar 

  46. Frischknecht R, Rebitzer G (2005) The ecoinvent database system: a comprehensive web-based LCA database. J Clean Prod 13(13–14):1337–1343

    Article  Google Scholar 

  47. D’Amico E (1995) Alternatives finding way in a stormy market. Chem Week 157(17):53–60

    Google Scholar 

  48. Kirschner EM (1994) Environment, health concerns force shift in use of organic solvents. Chem Eng News 72(25):13–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domnita Fratila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fratila, D. (2013). Sustainable Manufacturing Through Environmentally-Friendly Machining. In: Davim, J. (eds) Green Manufacturing Processes and Systems. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33792-5_1

Download citation

Publish with us

Policies and ethics