Skip to main content

Bacterial Endophytes of Perennial Crops for Management of Plant Disease

  • Chapter
  • First Online:
Bacteria in Agrobiology: Disease Management

Abstract

Bacterial endophytes have long been investigated for their beneficial effects on plants, such as plant growth promotion, increased mineral uptake, providing biologically fixed nitrogen, suppressing plant diseases, and induction of plant defense cascades. While the use of beneficial endophytes to mange plant diseases of annual and biannual crops has been researched and reviewed for some time now, far less work has focused on utilizing bacterial endophytes in perennial crops. Recent studies on the microbial communities of cacao, citrus, apple, spruce, and popular trees, among others, have demonstrated that perennial crops are home to a diverse community of endophytic bacteria. We summarize the present knowledge of biological control modes of action and use of bacterial endophytes for management of diseases in perennial crops. We also summarize the use of new molecular technologies, such as pyrosequencing and QPCR, to gain a better understanding on the interaction between plant hosts, pathogens, and bacterial endophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams PD, Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsutum L.). Plant Soil 240:181–189. doi:10.1023/a:1015840224564

    Article  CAS  Google Scholar 

  • Afkhami ME, Rudgers JA (2008) Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses. Am Nat 172:405–416

    Article  PubMed  Google Scholar 

  • Almeida LC, Pereira EF, Purcell AH, Lopes JRS (2001) Multiplication and movement of a citrus strain of Xylella fastidiosa within sweet orange. Plant Dis 85:382–386. doi:10.1094/PDIS.2001.85.4.382

    Article  Google Scholar 

  • Amorim L, Gergamin Filho A, Palazzo DA, Bassanezi RB, Godoy CV, Torres GAM (1987) Chlorose variegada dos citros: uma escala diagamatica para avaliacao da severidade da doenca. Fitopatol Bras 18:174–180

    Google Scholar 

  • Andreote FD, Lacava PT, Gai CS, Araújo WL, Maccheroni JW, van Overbeek LS, van Elsas JD, Azevedo JL (2006) Model plants for studying the interaction between Methylobacterium mesophilicum and Xylella fastidiosa. Can J Microbiol 52:419–426. doi:10.1139/w05-142

    Article  PubMed  CAS  Google Scholar 

  • Araújo WL, Maccheroni W, Aguilar-Vildoso MAG, Barroso PAV, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  PubMed  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W, Elsas JDv, Vuurde JWLv, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Google Scholar 

  • Arikawa E, Sun Y, Wang J, Zhou Q, Ning B, Dial S, Guo L, Yang J (2008) Cross-platform comparison of SYBR(R) Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC) study. BMC Genomics 9(1):328

    Article  PubMed  CAS  Google Scholar 

  • Azaiez A, Boyle B, Levée V, Séguin A (2009) Transcriptome profiling in Hybrid poplar following interactions with Melampsora rust fungi. Mol Plant Microbe Interact 22:190–200. doi:10.1094/mpmi-22-2-0190

    Article  PubMed  CAS  Google Scholar 

  • Backman PA, Tuzun S (1999) Induced systemic resistance of plants to pathogenic microorganisms. US Patent 5,888,501

    Google Scholar 

  • Backman PA, Wilson M, Murphy JF (1998) Bacteria for biological control of plant diseases. In: Rechcig NARaJE (ed) Environmentally safe approaches to plant disease control. CRC/Lewis, Boca Raton, FL, pp 95–109

    Google Scholar 

  • Bacon CW, Yates IE, Hinton DM, Meredith F (2001) Biological control of Fusarium moniliforme in maize. Environ Health Perspect 109(s2)

    Google Scholar 

  • Bae H, Roberts DP, Lim H-S, Strem MD, Park S-C, Ryu C-M, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant Microbe Interact 24:336–351. doi:10.1094/MPMI-09-10-0221

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238. doi:10.1139/w02-014

    Article  PubMed  CAS  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464. doi:10.1007/s00425-006-0314-0

    Article  PubMed  CAS  Google Scholar 

  • Baker K, Cook RJ (1974) Biological control of plant pathogens. W.H. Freeman, San Francisco, CA

    Google Scholar 

  • Bargabus RL, Ziback NK, Sherwood JE, Jacobsen BJ (2002) Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298

    Article  CAS  Google Scholar 

  • Bargabus BL, Zidack NK, Sherwood JE, Jacobsen BJ (2003) Oxidative burst elicited by Bacillus mycoides isolate BacJ, a biological control agent, occurs independently of hypersensitive cell death in sugar beet. Mol Plant Microbe Interact 16:1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Barka EA, Gognies S, Nowak J, Audran J-C, Belarbi A (2002) Inhibitory effect of endophytic bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142

    Article  Google Scholar 

  • Barnett MJ, Toman CJ, Fisher RF, Long SR (2004) A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proc Natl Acad Sci USA 101:16636–16641. doi:10.1073/pnas.0407269101

    Article  PubMed  CAS  Google Scholar 

  • Beattie GA, Lindow SE (1999) Bacterial colonization of leaves: a spectrum of strategies. Phytopathology 89:353–359

    Article  PubMed  CAS  Google Scholar 

  • Benıtez M-S, Tustasa FB, Rotenberga D, Kleinhenzb MD, Cardina J, Stinner D, Miller SA, Gardener BBM (2007) Multiple statistical approaches of community fingerprint data reveal bacterial populations associated with general disease suppression arising from the application of different organic field management strategies. Soil Biol Biochem 39:2289–2301

    Article  CAS  Google Scholar 

  • Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes: microbial root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Soil biology, vol 9. Springer, Berlin, pp 53–69. doi:10.1007/3-540-33526-9_4

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229. doi:10.1016/j.femsec.2004.08.006

    Article  PubMed  CAS  Google Scholar 

  • Brannen PM, Kenney DS (1997) Kodiak®—a successful biological-control product for suppression of soil-borne plant pathogens of cotton. J Ind Microbiol Biotechnol 19:169–171. doi:10.1038/sj.jim.2900439

    Article  CAS  Google Scholar 

  • Broadbent P, Baker K, Waterworth Y (1971) Bacteria and actinomycetes antogonistic to fungal root pathogens in Australian soils. Aust J Biol Sci 24:925–944. dx.doi.org/10.1071/BI9710925

    Google Scholar 

  • Bubán T, Orosz-Kovács Z, Farkas Á (2003) The nectary as the primary site of infection by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Syst Evol 238:183–194

    Google Scholar 

  • Campbell DH (1908) Symbiosis in ferm prothallia. Am Nat 42:495

    Google Scholar 

  • Cankar K, Ravnikar HKM, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345

    Article  PubMed  CAS  Google Scholar 

  • Cartieaux F, Thibaud M-C, Zimmerli L, Lessard P, Sarrobert C, David P, Gerbaud A, Robaglia C, Somerville S, Nussaume L (2003) Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J 36:177–188

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Bauske EM, Musson G, Rodriguezkabana R, Kloepper JW (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91

    Article  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    PubMed  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Conn VM, Franco CMM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70:6407–6413. doi:10.1128/aem.70.11.6407-6413.2004

    Article  PubMed  CAS  Google Scholar 

  • Cooper R (1959) Bacterial fertilizers in the Soviet Union. Soil Fertil 22:327–333

    Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499

    Article  PubMed  CAS  Google Scholar 

  • Davies KG, Kerry BR, Flynn CA (1988) Observations on the pathogenicity of Pasteuria penetrans, a parasite of root-knot nematodes. Ann Appl Biol 112:491–501

    Article  Google Scholar 

  • de Mayolo GA (2003) Genetic engineering of Theobroma cacao and molecular studies on cacao defense responses. PhD Dissertation, The Pennsylvania State University, University Park, PA

    Google Scholar 

  • Deberdt P, Mfegue CV, Tondje PR, Bon MC, Ducamp M, Hurard C, Begoude BAD, Ndoumbe-Nkeng M, Hebbar PK, Cilas C (2008) Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (Phytophthora megakarya) in Cameroon. Biol Control 44:149–159

    Article  Google Scholar 

  • Doty S, Oakley B, Xin G, Kang J, Singleton G, Khan Z, Vajzovic A, Staley J (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33. doi:10.1007/bf03179967

    Article  CAS  Google Scholar 

  • Driks A (1999) Bacillus subtilis spore coat. Microbiol Mol Biol 63:1–20

    CAS  Google Scholar 

  • Driks A (2004) The Bacillus spore coat. Phytopathology 94:1249–1251

    Article  PubMed  CAS  Google Scholar 

  • Dunleavy J (1955) Control of damping-off of sugar beet by Bacillus subtilis. Phytopathology 45:252

    Google Scholar 

  • Evans HC (1981) Pod rot of cacao caused by Moniliophthora (Monilia) roreri. Phytopathological Papers. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araújo WL (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14. doi:10.1111/j.1574-6968.2008.01258.x

    Article  PubMed  CAS  Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    PubMed  CAS  Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The Gram-positive side of plant–microbe interactions. Environ Microbiol 12:1–12. doi:10.1111/j.1462-2920.2009.01989.x

    Article  PubMed  CAS  Google Scholar 

  • Frändberg E, Schrnürer J (1998) Antifungal activity of chitinolytic bacteria isolated from airtight stored cereal grain. Can J Microbiol 44:121–127

    Article  Google Scholar 

  • Frank B (1885) Ueber die auf wurzelsymbiose beruhende ernahrung gewisser baume durch unterirdische pilze. Ber dt Bot Ges 3:128–145

    Google Scholar 

  • Fravel DR (2005) Commericialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  • Gai C, Lacava P, Quecine M, Auriac M-C, Lopes J, Araújo W, Miller T, Azevedo J (2009) Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of Citrus variegated chlorosis. J Microbiol 47:448–454. doi:10.1007/s12275-008-0303-z

    Article  PubMed  Google Scholar 

  • Gilbert GS, Parke JL, Clayton MK, Handelsman J (1993) Effects of an introduced bacterium on bacterial communities on roots. Ecology 74:840–854

    Article  Google Scholar 

  • Guest D (2007) Black pod: diverse pathogens with a global impact on cocoa yield. Phytopathology 97:1650–1653. doi:10.1094/phyto-97-12-1650

    Article  PubMed  Google Scholar 

  • Gupta VK, Utkhede RS (1986) Factors affecting the production of anti-fungal compounds by Enterobacter aerogenes and Bacillus subtilis, antagonists of Phytophthore cactorum. J Phytopathol 117:9–16

    Article  CAS  Google Scholar 

  • Hallman J, Quadt-Hallmann A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  Google Scholar 

  • Halverson LJ, Handelsman J (1991) Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber. Appl Environ Microbiol 57:2767–2770

    PubMed  CAS  Google Scholar 

  • Halverson LJ, Clayton MK, Handelsman J (1993) Population biology of Bacillus cereus UW85 in the rhizosphere of field-grown soybeans. Soil Biol Biochem 25:485–493

    Article  Google Scholar 

  • Handelsman J, Raffel S, Mester EH, Wunderlich L, Grau CR (1990) Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl Environ Microbiol 56:713–718

    PubMed  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Biol 2:43–56

    Article  CAS  Google Scholar 

  • Hebbar KP (2007) Cacao diseases: a global perspective from an industry point of view. Phytopathology 97(12):1658–1663

    Article  PubMed  Google Scholar 

  • Heil M (2001) The ecological concept of costs of induced systemic resistance (ISR). Eur J Plant Pathol 107:137–146

    Article  Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    Article  PubMed  CAS  Google Scholar 

  • Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075

    Article  PubMed  CAS  Google Scholar 

  • Holb IJ, Heijne B, Jeger MJ (2004) Overwintering of conidia of Venturia inaequalis and the contribution to early epidemics of apple scab. Plant Dis 88:751–757

    Article  Google Scholar 

  • Hollis JP (1951) Bacteria in healthy plant tissue. Phytopathology 41:350–366

    Google Scholar 

  • Hopkins DL (1989) Xylella fastidiosa: xylem-limited bacterial pathogen of plants. Annu Rev Phytopathol 27:271–290

    Article  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626

    Article  PubMed  CAS  Google Scholar 

  • Inbar J, Menendez A, Chet I (1996) Hyphal interaction between Trichoderma harzianum and Sclerotina sclerotiorum and its role in biological control. Soil Biol Biochem 28:757–763

    Article  CAS  Google Scholar 

  • Izumi H, Anderson IC, Killham K, Moore ERB (2008) Diversity of predominant endophytic bacteria in European deciduous and coniferous trees. Can J Microbiol 54:173–179

    Article  PubMed  CAS  Google Scholar 

  • Jensen MA, Webster JA, Strauss N (1993) Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952

    PubMed  CAS  Google Scholar 

  • Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24:285–291

    Article  Google Scholar 

  • Ji K-X, Chi F, Yang M-F, Shen S-H, Jing Y-X, Dazzo FB, Cheng H-P (2010) Movement of rhizobia inside tobacco and lifestyle alternation from endophytes to free-living rhizobia on leaves. J Microbiol Biotechnol 20:238–244

    Article  PubMed  CAS  Google Scholar 

  • Keith LM, Velasquez ME, Zee FT (2006) Identification and characterization of Pestalotiopsis spp. causing scab disease of guava, Psidium guajava, in Hawaii. Plant Dis 90:16–23

    Article  CAS  Google Scholar 

  • Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filée P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove DJ (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci USA 105:16876–16881

    Article  PubMed  CAS  Google Scholar 

  • Kishore GK, Podile AR (2005) Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi DY, Reedy RM, Bick J, Oudemans PV (2002) Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68(3):1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Koh S, Hik DS (2007) Herbivory mediate grass-endophyte relationships. Ecology 88:2752–2757

    Article  PubMed  Google Scholar 

  • Kokalis-Burelle N, Backman PA, Rodríguez-Kábana R, Ploper LD (1992) Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments. Biol Control 2:321–328

    Article  Google Scholar 

  • Krauss U, Soberanis W (2001) Biocontrol of cocoa pod diseases with mycoparasite mixtures. Biol Control 22:149–158

    Article  Google Scholar 

  • Lacava PT, Araújo WL, Marcon J, Maccheroni W, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett Appl Microbiol 39:55–59

    Article  PubMed  CAS  Google Scholar 

  • Lacava PT, Li WB, Araújo WL, Azevedo JL, Hartung JS (2006) Rapid, specific and quantitative assays for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants. J Microbiol Methods 65:535–541

    Article  PubMed  CAS  Google Scholar 

  • Lacava P, Li W, Araújo W, Azevedo J, Hartung J (2007a) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45:388–393

    PubMed  CAS  Google Scholar 

  • Lacava PT, Araújo WL, Azevedo JL (2007b) Evaluation of endophytic colonization of Citrus sinensis and Catharanthus roseus seedlings by endophytic bacteria. J Microbiol 45:11–14

    PubMed  CAS  Google Scholar 

  • Lacava PT, Silva-Stenico ME, Araújo WL, Simionato AVC, Carrilho E, Tsai SM, Azevedo JL (2008) Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesquisa Agro Bras 43:521–528

    Google Scholar 

  • Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120

    Article  CAS  Google Scholar 

  • Lambais MR, Crowley DE, Cury JC, Büll RC, Rodrigues RR (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312:1917

    Article  PubMed  CAS  Google Scholar 

  • Landgraf FA, Zehr EI (1982) Inoculum sources for Monilinia fructicola in South Carolina peach orchards. Phytopathology 72:185–190

    Article  Google Scholar 

  • Li H, Barbetti MJ, Sivasithamparam K (2006) Concomitant inoculation of an avirulent strain of Leptosphaeria maculans prevent break-down of single dominant gene-based resistance in Brassica napus cv. Surpass 400 by virluent strain. Field Crops Res 95:206–211

    Article  Google Scholar 

  • Lindow SE, McGourty GM, Elkins R (1996) Interaction of antibiotics with Pseudomonas fluorescens strain A506 in the control of fire blight and frost injury to pear. Phytopathology 86:841–848

    Article  CAS  Google Scholar 

  • Madmony A, Chernin L, Pleban S, Peleg E, Riov J (2005) Enterobacter cloacae; an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiol 50:209–216

    Article  CAS  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modified mineral uptake in tall fescue. Plant Soil 227:115–126

    Article  CAS  Google Scholar 

  • Manter D, Delgado J, Holm D, Stong R (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166

    Article  PubMed  Google Scholar 

  • Martinez-Godoy MA, Mauri N, Juarez J, Marques MC, Santiago J, Forment J, Gadea J (2008) A genome-wide 20 K citrus microarray for gene expression analysis. BMC Genomics 9:318

    Article  PubMed  CAS  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes form cotton and sweet corn. Plant Soil 173:337–343

    Article  CAS  Google Scholar 

  • McSpadden-Gardener BB (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. APSnet Feature (Online)

    Google Scholar 

  • Meinhardt L, Rincones J, Bailey B, Aime M, Griffith G, Zhang D, Pereira G (2008) Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: what’s new from this old foe? Mol Plant Pathol 9:577–588

    Article  PubMed  Google Scholar 

  • Melnick RL, Zidack NK, Bailey BA, Maximova SN, Guiltinan M, Backman PA (2008) Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control 46:46–56

    Article  Google Scholar 

  • Melnick RL, Backman PA, Solis K, Vera DI, Suarez C (2009) Field evaluation of four endophytic Bacillus spp. with five cacao varieties for management of witches’ broom. Plant Dis Manage Rep 3:V146. doi:110.1094/PDMR1003

  • Melnick RL, Suárez C, Bailey BA, Backman PA (2011) Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao diseases. Biol Control 57:236–245

    Article  Google Scholar 

  • Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R (2003) Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res Microbiol 154:105–114

    Article  PubMed  Google Scholar 

  • Monot C, Pajot E, Le Corre D, Silue D (2002) Induction of systemic resistance in broccoli (Brassica oleracea var. botrytis) against downy mildew (Peronospora parasitica) by avirulent isolates. Biol Control 24:75–81

    Article  Google Scholar 

  • Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698

    PubMed  CAS  Google Scholar 

  • Nichols R (1961) Xylem occlusions in the fruit of cacao (Theobroma cacao) and their relation to cherelle wilt. Ann Bot 25:465–475

    Google Scholar 

  • Nilsson M, Renberg I (1990) Viable endospores of Thermoactinomyces vulgaris in lake sediments as indicators of agricultural history. Appl Environ Microbiol 56:2025–2028

    PubMed  CAS  Google Scholar 

  • Ochoa JB, Yangari B, Galarza V, Fiallos J, Ellis MA (2001) Vascular wilt of common naranjilla (Solanum quitoense) caused by Fusarium oxysporum in Ecuador. Plant Health Prog. doi:10.1094/PHP-2001-0918-01-HN

  • Osburn RM, Milner JL, Oplinger ES, Smith RS, Handelsman J (1995) Effect of Bacillus cereus UW85 in the yield of soybean at two field sites in Wisconsin. Plant Dis 79:551–556

    Article  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Pavlo A, Leonid O, Iryna Z, Natalia K, Maria PA (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control 56:43–49

    Article  Google Scholar 

  • Pearson RC, Gadoury DM (1987) Cleistothecia, the source of primary inoculum for rgape powdery mildew in New York. Phytopathology 77:1509–1514

    Article  Google Scholar 

  • Pieterse CM, van Wees SCM, Hofflan E, van Pelta JA, van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicyclic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    Google Scholar 

  • Pieterse CM, van Wees SCM, van Pelta JA, Knoester M, Laan R, Gerrits H, Weisebeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Google Scholar 

  • Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288

    Article  PubMed  CAS  Google Scholar 

  • Poleatewich AM, Ngugi HK, Backman PA (2011) Assessment of application timing of Bacillus spp. to suppress pre- and postharvest diseases of apple. Plant Dis 96:211–220

    Article  Google Scholar 

  • Posada F, Vega FE (2005) Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia 97:1195–1200

    Article  PubMed  Google Scholar 

  • Rao DPC, Agrawal SC, Saksena SB (1976) Phomopsis destructum on Psidium guajava fruits in India. Mycologia 68:1132–1134

    Article  PubMed  CAS  Google Scholar 

  • Rasche F, Trondl R, Naglreiter C, Reichenauer TG, Sessitsch A (2006) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Can J Microbiol 52:1036–1045

    Article  PubMed  CAS  Google Scholar 

  • Reader JS, Ordoukhanian PT, Kim J-G, de Crecy-Lagard V, Hwang I, Farrand S, Schimmel P (2005) Major biocontrol of plant tumors targets tRNA synthetase. Science 309:1533

    Article  PubMed  CAS  Google Scholar 

  • Roberto SR, Coutinho A, Lima JEO, Miranda VS, Carlos EF (1996) Transmissão de Xylella fastidiosa pelas cigarrinhas Dilobopterus costalimai, Acrogonia terminalis e Oncometopia facialis em citros. Fitopatol Brasi 21:517–518

    Google Scholar 

  • Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9:99–108

    Article  PubMed  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sabaratnam S, Beattie GA (2003) Differences between Pseudomonas syringae pv. syringae B728a and Pantoea agglomerans BRT98 in epiphytic and endophytic colonization of leaves. Appl Environ Microbiol 69:1220–1228

    Article  PubMed  CAS  Google Scholar 

  • Sagaram US, DeAngelis KM, Trivedi P, Andersen GL, Lu S-E, Wang N (2009) Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip arrays and 16S rRNA gene clone library sequencing. Appl Environ Microbiol 75:1566–1574

    Article  PubMed  CAS  Google Scholar 

  • Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol 24:250–258

    Article  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  PubMed  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, synthesis, and specific functions. Mol Microbiol 56:845–857

    Article  PubMed  CAS  Google Scholar 

  • Stockwell VO, Stack JP (2007) Using Pseudomonas spp. for integrated biological control. Phytopathology 97:244–249

    Article  PubMed  Google Scholar 

  • Stoltzfus JR, So R, Malarvithi PP, Ladha JK, de Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soil 25:13–19

    Article  Google Scholar 

  • Sugawara K, Ohkubo H, Yamashita M, Mikoshiba Y (2004) Flowers for Neotyphodium; endophytes detection: a new observation method using flowers of host grasses. Mycoscience 45:222–226

    Article  Google Scholar 

  • Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity, and their effects on plant growth. Plant Soil 253:381–390

    Article  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  PubMed  CAS  Google Scholar 

  • Tellenbach C, Grünig CR, Sieber TN (2010) Suitability of quantitative real-time PCR To estimate the biomass of fungal root endophytes. Appl Environ Microbiol 76:5764–5772

    Article  PubMed  CAS  Google Scholar 

  • Toharisman A, Suhartono MT, Spindler-Barth M, Hwang J-K, Pyun Y-R (2005) Purification and characterization of a thermostable chitinase from Bacillus licheniformis Mb-2. World J Microbiol Biotechnol 2:733–738

    Article  CAS  Google Scholar 

  • Turner JT, Backman PA (1991) Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis 75:347–353

    Article  Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180

    Article  PubMed  CAS  Google Scholar 

  • van Hulten M, Pelser M, van Loon LC, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607

    Article  PubMed  CAS  Google Scholar 

  • van Wees SCM, Luijendijk M, Smoorenburg I, van Loon LC, Pierterse CMJ (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulated the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol 41:537–549

    Article  PubMed  Google Scholar 

  • Vega FE, Pava-Ripoll M, Posada F, Buyer JS (2005) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 45:371–380

    Article  PubMed  Google Scholar 

  • Verhagen BWM, Jane G, Zhu T, Chang H-S, van Loon LC, Pieterse CM (2004) The transctiptome rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908

    Google Scholar 

  • Waters DLE, Holton TA, Ablett EM, Lee LS, Henry RJ (2005) cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genomics 5:40–58

    Article  PubMed  CAS  Google Scholar 

  • Weinert N, Piceno Y, Ding G-C, Meincke R, Heuer H, Berg G, Schloter M, Andersen G, Smalla K (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506

    Article  PubMed  CAS  Google Scholar 

  • West ER, Cother EJ, Steel CC, Ash GJ (2010) The characterization and diversity of bacterial endophytes of grapevine. Can J Microbiol 56:209–216

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm E, Arthofer W, Schafleitner R, Krebs B (1998) Bacillus subtilis and endophyte of chestnut (Castanea sativa) as antagonist against chestnut blight (Cryphonectria parasitica). Plant Cell Tiss Org Cult 52:105–108

    Article  Google Scholar 

  • Wilson M, Lindow SE (1993) Interactions between the biological control agent Pseudomonas fluorescense A506 and Erwinia amylovora in pear blossoms. Acta Hortic 338:329–330

    Google Scholar 

  • Wilson M, Epton HAS, Sigee DC (1992) Interactions between Erwinia herbicola and E. amylovora on the stigma of hawthorn blossoms. Phytopathology 82:914

    Article  Google Scholar 

  • Zavilgelsky GB, Abilev SK, Sukhodolets VV, Ahmad SI (1998) Isolation and analysis of UV and radio-resistant bacteria from Chernobyl. Photochem Photobiol B 15:152–157

    Article  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

  • Zeriouh H, Romero D, García-Gutiérrez L, Cazorla FM, de Vicente A, Pérez-García A (2011) The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant Microbe Interact 24:1540–1552

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work presented in this chapter was supported in part by USAID’s IPM-CRSP and SANREM-CRSP and the USDA Agricultural Research Service. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel L. Melnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melnick, R.L., Bailey, B.A., Backman, P.A. (2013). Bacterial Endophytes of Perennial Crops for Management of Plant Disease. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Disease Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33639-3_3

Download citation

Publish with us

Policies and ethics