Skip to main content

Bacteria for Plant Growth Promotion and Disease Management

  • Chapter
  • First Online:

Abstract

The present article focuses on the role of free living bacteria in the suppression of soil-borne phytopathogens mainly Pseudomonas, Bacillus, and the actinomycetes. It also focuses on Plant –rhizobacteria interactions are involved in root colonization and molecular and biochemical basis of root colonization. Recently, the plant a ssociated bacteria called plant growth promoting rhizobacteria (PGPR) have received great attention for use as a biofertilizer and/or biopesticides for the sustainability of agro-ecosystems. Due to their deleterious effects on plant health, plant pathogens are one of the major problems for crop productivity. The present paper presents the traits involved in root colonization by rhizobacteria, the most important rhizobacteria and PGPRs used as biocontrol agents, and their role in suppression of plant diseases either in natural disease-suppressive soils or as introduced biocontrol agents for plant disease management. The paper also emphasizes the biochemical and molecular traits involved in disease suppression (production of siderophores, lytic enzymes, antibiotics, and induction of systemic resistance).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahl P, Voisard C, Defago G (1986) Iron bound siderophores, cyanic acid, and antibiotics involved in suppression of Thielaviopis basicola by a Pseudomonas fluorescens strain. J Phytopathol 116:121–134

    Article  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  PubMed  CAS  Google Scholar 

  • Ahn IP, Park K, Kim CH (2002) Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense-related gene expression. Mol Cell 13:302–308

    CAS  Google Scholar 

  • Alabouvette C, Höper H, Lemanceau P, Steinberg C (1996) Soil suppressiveness to diseases induced by soil-borne plant pathogens. In: Stotzky G, Bollag J-M (eds) Soil biochemistry. Marcel Dekker, New York, pp 371–413

    Google Scholar 

  • Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrâtes of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Article  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Amkraz N, Boudyach EH, Boubaker H, Bouizgarne B, Ait Ben Aoumar A (2010) Screening for fluorescent pseudomonades, isolated from the rhizosphere of tomato, for antagonistic activity toward Clavibacter michiganensis subsp. michiganensis. World J Microbiol Biotechnol 26:1059–1065

    Article  Google Scholar 

  • Andersen JB, Koch B, Nielsen TH, Sørensen D, Hansen M, Nybroe O, Christophersen C, Sørensen J, Molin S, Givskov M (2003) Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149:1147–1156

    Article  CAS  Google Scholar 

  • Anderson AJ, Habibzadegah-Tari P, Tepper CS (1988) Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas putida. Appl Environ Microbiol 54:375–380

    PubMed  CAS  Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth-promoting rhizobacteria (PGPR). In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere 18:611–620

    Article  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtillis RB14. Appl Environ Microbiol 62:4081–4085

    PubMed  CAS  Google Scholar 

  • Aseri GK, Jain N, Panwar J, Rao AV, Meghwal PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117:130–135

    Article  Google Scholar 

  • Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    PubMed  CAS  Google Scholar 

  • Audenaert K, Pattery T, Comelis P, Hofte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Article  Google Scholar 

  • Baker R (1991) Induction of rhizosphere competence in the biocontrol fungus Trichoderma. In: Keister DL, Cregan PB (eds) Rhizosphere and plant growth. Kluwer Academic, Dordrecht, pp 221–228

    Chapter  Google Scholar 

  • Bakker PAHM (1989) Siderophore-mediated plant growth promotion and colonization of roots by strains of Pseudomonas spp. Ph.D thesis, Willie Commelin Scholten Phytopathological Laboratory, Department of Plant Pathology, State University Utrecht, Javalaan 20, 3742 Baarn, The Netherlands, pp 100

    Google Scholar 

  • Bakker AW, Schippers B (1995) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudmonas fluorescens. Phytopathology 85:1021–1027

    Article  Google Scholar 

  • Bakker PAHM, Weisbeek PJ, Schippers B (1988) Siderophore production by plant growth promoting Pseudomonas spp. J Plant Nutr 11:925–933

    Article  CAS  Google Scholar 

  • Bakker PAHM, Raaijmakers JM, Bloemberg GV, Hofte M, Lemanceau P, Cooke M (2007) New perspectives and approaches in plant growth-promoting rhizobacteria research. Eur J Plant Pathol 119:241–242

    Article  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2003) Characterisation of systemic resistance in sugar beet elicited by a nonpathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298

    Article  CAS  Google Scholar 

  • Bar-Ness E, Chen Y, Hadar Y, Marschner H, Römheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241

    Article  CAS  Google Scholar 

  • Barnett SJ, Singleton I, Ryder M (1999) Spatial variation in population of Pseudomonas corrugata 2140 and Pseudomonads on take-all diseased and healthy root systems of wheat. Soil Biol Biochem 31:633–636

    Article  CAS  Google Scholar 

  • Barrows-Broaddus J, Kerr TK (1981) Inhibition of Fusarium moniliforme var. subglutinans, the casual agent of pitch canker, by the soil bacterium Arthrobacter sp. Can J Microbiol 27:20–27

    Article  PubMed  CAS  Google Scholar 

  • Becker JO, Hedges RW, Messens E (1985) Inhibitory effect of pseudobactin on the uptake of iron by higher plants. Appl Environ Microbiol 49:1090–1093

    PubMed  CAS  Google Scholar 

  • Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800

    Article  PubMed  CAS  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  PubMed  CAS  Google Scholar 

  • Bermpohl A, Dreier J, Bahro R, Eichenlaub R (1996) Exopolysaccharides in the pathogenic interaction of Clavibacter michiganensis subsp. michiganensis with tomato plants. Microbiol Res 151:391–399

    Article  CAS  Google Scholar 

  • Bloemberg GV (2007) Microscopic analysis of plant -bacterium interactions using auto fluorescent proteins. Eur J Plant Pathol 119:301–309

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:43–350

    Article  Google Scholar 

  • Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176

    Article  PubMed  CAS  Google Scholar 

  • Bolwerk A, Lugtenberg BJJ (2005) Visualization of interactions of microbial biocontrol agents and phytopathogenic fungus Fusarium oxysporum f. sp. radicis lycopersici on tomato roots. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Berlin, pp 217–231

    Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC, Lugtenberg BJJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:983–993

    Article  Google Scholar 

  • Bouizgarne B, El Hadrami I, Ouhdouch Y (2006) Novel production of isochainin by a strain of Streptomyces sp. isolated from rhizosphere soil of the indigenous Moroccan plant Argania spinosa L. World J Microbiol Biotechnol 22:423–429

    Article  CAS  Google Scholar 

  • Brisbane PG, Rovira AD (1988) Mechanisms of inhibition of Gaeumannomyces graminis var. tritici by fluorescent pseudomonads. Plant Pathol 37:104–111

    Article  CAS  Google Scholar 

  • Broadbent P, Baker KF, Waterworth Y (1971) Bacteria and actinomycetes antagonistic to fungal root pathogens in Australian soils. Aust J Biol Sci 24:925–944

    PubMed  CAS  Google Scholar 

  • Budzikiewicz H (1997) Siderophores of fluorescent pseudomonads. Z Naturforsch C 52:713–720

    PubMed  CAS  Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. triciti by Pseudomonas fluorescens strain 2–79. Phytopathology 81:954–959

    Article  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  • Burr TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377–1383

    Article  Google Scholar 

  • Buyer JS, Sikora LJ, Chaney RL (1989) A new growth medium for the study of siderophore-mediated interactions. Biol Fertil Soils 8:97–101

    Article  Google Scholar 

  • Chabot R, Antoun H, Cescas M (1993) Stimulation de la croissance du maïs et de la laitue romaine par des microorganismes dissolvant le phosphore inorganique. Can J Microbiol 39:941–947

    Article  Google Scholar 

  • Chebotar VK, Asis CA Jr, Akao S (2001) Production of growth-promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when coinoculated with Bradyrhizobium japonicum. Biol Fertil Soils 34:427–432

    CAS  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    PubMed  CAS  Google Scholar 

  • Chernin L, Brandis A, Ismailov Z, Chet I (1996) Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 32:208–212

    Article  CAS  Google Scholar 

  • Chernin LS, Fuente LDL, Sobolov V, Haran S, Vorgias CE, Oppenheim AB, Chet I (1997) Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl Environ Microbiol 63:834–839

    PubMed  CAS  Google Scholar 

  • Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil 129:85–92

    Article  Google Scholar 

  • Chin-A-Woeng TFC, de Priester W, van der Bij AJ, Lugtenberg BJJ (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol Plant Microbe Interact 10:79–86

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy HV, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:1069–1077

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato root rot. Mol Plant Microbe Interact 12:1340–1345

    Article  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  Google Scholar 

  • Constantinescu F (2001) Extraction and identification of antifungal metabolites produced by some B. subtilis strains. Analele Institutului de Cercetari Pentru Cereale Protectia Plantelor 31:17–23

    Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    PubMed  CAS  Google Scholar 

  • Crawford DL, Kowalski M, Roberts MA, Merrel G, Deobald LA (2005) Discovery, development an commercialization of a microbial antifungal biocontrol agent Streptomyces lydicus WYEC 108: history of a decade long endeavour. Soc Ind Microbiol News 55:88–95

    Google Scholar 

  • Da Mota FF, Gomes EA, Seldin L (2008) Auxin production and detection of the gene coding for the auxin efflux carrier (AEC) protein in Paenibacillus polymyxa. J Microbiol 56:275–264

    Google Scholar 

  • de Boer M, Bom P, Kindt F, Keurentjes JJB, van der Sluis I, van Loon LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626–632

    Article  PubMed  Google Scholar 

  • de Mot R, Proost P, van Damme J, Vander Leyden J (1992) Homology of the root adhesin of Pseudomonas fluorescens OE 28.3 with porin F of P. aeruginosa and P. syringae. Mol Gen Genet 231:489–493

    Article  PubMed  Google Scholar 

  • de Souza JTA, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    Article  PubMed  Google Scholar 

  • de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric Streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. Biocontrol 54:807–816

    Article  Google Scholar 

  • De Vleesschauwer D, Djavaheri M, Bakker PAHM, Höfte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148:1996–2012

    Article  PubMed  CAS  Google Scholar 

  • De Weger LA, Van Boxtel R, Van Der Burg B, Gruters RA, Geels FP, Schippers B, Lugtenberg B (1986) Siderophores and outer membrane proteins of antagonistic, plant- growth-stimulating, rootcolonizing Pseudomonas spp. J Bacteriol 165:585–594

    PubMed  Google Scholar 

  • de Weger LA, van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg BJJ (1987) Flagella of a plant growth stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773

    PubMed  Google Scholar 

  • de Weger LA, Bakker PAHM, Schippers B, van Loosdrecht MCM, Lugtenberg BJJ (1989) Pseudomonas spp. with mutational changes in the Oantigenic side chain of their lipopolysaccharide are affected in their ability to colonize potato roots. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin, pp 197–202

    Google Scholar 

  • de Weger LA, Kuipe I, van der Bij AJ, Lugtenberg BJJ (1997) Use of a lux-based procedure to rapidly visualize root colonization by Pseudomonas fluorescens in the wheat rhizosphere. Antonie Leeuwenhoek 72:365–372

    Article  PubMed  Google Scholar 

  • Deepa CK, Dastager SG, Pandey A (2010) Plant growth-promoting activity in newly isolated Bacillus thioparus (NII-0902) from Western ghat forest, India. World J Microbiol Biotechnol 26:2277–2283

    Article  Google Scholar 

  • Défago G, Haas D, Berling CH, Burger U, Keel C, Voisard C, Wirthner P, Wuthrich B (1990) Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, pp 93–108

    Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11:763–771

    Article  PubMed  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  CAS  Google Scholar 

  • Duijff BJ, Meijer JW, Bakker PAHM, Schippers B (1993) Siderophore-mediated competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth Plant Pathol 99:277–289

    Article  CAS  Google Scholar 

  • Duijff BJ, Bakker PAHM, Schippers B (1994a) Suppression of Fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci Technol 4:279–288

    Article  Google Scholar 

  • Duijff BJ, Bakker PAHM, Schippers B (1994b) Ferric pseudobactin 358 as an iron source for carnation. J Plant Nutr 17:2069–2078

    Article  CAS  Google Scholar 

  • Duijff BJ, De Kogel WJ, Bakker PAHM, Schippers B (1994c) Influence of pseudobactin 358 on the iron nutrition of barley. Soil Biol Biochem 26:1681–1994

    Article  CAS  Google Scholar 

  • Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer-membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens WCS417r. New Phytol 135:325–334

    Article  CAS  Google Scholar 

  • Dunne C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143:3921–3391

    Article  CAS  Google Scholar 

  • Dunne C, Moënne-Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, O’Gara F (1998) Combining proteolytic and phloroglucinol-producing bacteria for improved biocontrol of Pythium-mediated damping-off of sugar beet. Pathology 47:299–307

    Google Scholar 

  • El-Abyad MS, El-Sayed MA, El-Shanshoury AR, El-Sabbagh SM (1993) Towards the biological control of fungal and bacterial diseases of tomato using antagonism Streptomyces spp. Plant Soil 149:185–195

    Article  Google Scholar 

  • Elad Y, Baker R (1985a) The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp by Pseudomonas spp. Phythopathology 75:1053–1059

    Article  CAS  Google Scholar 

  • Elad Y, Baker R (1985b) Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology 75:1047–1052

    Article  CAS  Google Scholar 

  • El-Banna N, Winkelmann G (1988) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85:69–78

    Article  Google Scholar 

  • El-Tarabily KA (2006) Rhizosphere-competent isolates of Streptomycete and non-streptomycete Actinomycetes capable of producing cell-wall degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can J Bot 84:211–222

    Article  CAS  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1- aminocyclopropane-1- carboxylic acid deaminase-producing streptomycete Actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GESJ (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and Actinomycetes. Plant Pathol 49:573–583

    Article  Google Scholar 

  • El-Tarabily KA, Nassar AH, Sivasithamparam K (2008) Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere- competent isolate of Micromonospora endolithica. Appl Soil Ecol 39:161–171

    Article  Google Scholar 

  • Fließbach A, Winkler M, Lutz MP, Oberholzer H-R, Mäder P (2009) Soil Amendment with Pseudomonas fluorescens CHA0: Lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb Ecol 57:611–623

    Article  PubMed  Google Scholar 

  • Foster RC, Rovira AD (1978) The ultrastructure of the rhizosphere of Trifolium subterraneum L. In: Loutit MW, Miles JAR (eds) Microbial ecology. Springer, Berlin, pp 278–290

    Chapter  Google Scholar 

  • Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) Actinobacterial endophytes for improved crop performance. Australas Plant Pathol 36:524–531

    Article  Google Scholar 

  • Frankowski Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a ß-1, 3 glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • Gamalero E, Lingua G, Caprì FG, Fusconi A, Berta G, Lemanceau P (2004) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiol Ecol 48:79–87

    Article  PubMed  CAS  Google Scholar 

  • Gamalero E, Lingua G, Tombolini R, Avidano L, Pivato B, Berta G (2005) Colonization of tomato root seedling by Pseudomonas fluorescens 92 rkG5: spatio-temporal dynamics, localization, organization, viability, and culturability. Microbiol Ecol 50:289–297

    Article  Google Scholar 

  • Geels FP, Schippers B (1983) Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. Phytopathol J 108:193–206

    Article  Google Scholar 

  • Georgakopoulos DG, Hendson M, Panopoulos NJ, Schroth MN (1994) Cloning of a phenazine biosynthetic locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene. Appl Environ Microbiol 60:2931–2938

    PubMed  CAS  Google Scholar 

  • Gill PR, Warren GJ (1988) An iron-antagonized fungistatic agent that is not required for iron assimilation from a fluorescent rhizosphere pseudomonad. J Bacteriol 170:163–170

    PubMed  CAS  Google Scholar 

  • Glandorf DCM, van der Sluis I, Anderson AJ, Bakker PAHM, Schippers B (1994) Agglutination, adherence, and root colonization by fluorescent pseudomonads. Appl Environ Microbiol 60:1726–1733

    PubMed  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Goddard VJ, Bailey MJ, Darrah P, Lilley AK, Thompson IP (2001) Monitoring temporal and spatial variation in rhizosphere bacterial population diversity: a community approach for the improved selection of rhizosphere competent bacteria. Plant Soil 232:181–193

    Article  CAS  Google Scholar 

  • Gómez-Gómez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284

    Article  PubMed  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Gupta A, Meyer JM, Goel R (2002) Development of heavy metal-resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI 4014 and their characterization. Curr Microbiol 45:323–327

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate rootsystem architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83

    Article  CAS  Google Scholar 

  • Guzzo SD, Martins EMF (1996) Local and systemic induction of β-1, 3-glucanase and chitinase in coffee leaves protected against Hemileia vastatrix by Bacillus thuringiensis. J Phytopathol 144:449–454

    Article  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  PubMed  CAS  Google Scholar 

  • Hamby MK (2001) M.S. thesis. University of Idaho, Moscow

    Google Scholar 

  • Hamby MK, Crawford DL (2000) The enhancement of plant growth by selected Streptomyces species. In: 100th General meeting of American Society for Microbiology, Los Angeles, CA. Abstract 567

    Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008a) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008b) Rock phosphate-solubilizing Actinomycetes: screening for growth promotioing activities. World J Microbial Biotechnol 24:2565–2575

    Article  CAS  Google Scholar 

  • Hasegawa S, Meguro A, Shimizu M, Nishimura T, Toyoda K, Shiraishi T, Kunoh H (2008) Two bioassay methods to evaluate root-accelerating activity of Streptomyces sp. MBR52 metabolites. Actinomycetologica 22:42–45

    Article  Google Scholar 

  • He H, Silo-Suh LA, Handelsman J, Clardy J (1994) Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett 35:2499–2502

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Uber neue Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriolgie und unter besonderes Berucksichtigung der Grundugungen und Brauche. Arb Dtsch Landwirt Ges Berl 98:59–78

    Google Scholar 

  • Hohnadel D, Meyer JM (1988) Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. J Bacteriol 170:4865–4873

    PubMed  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482

    Article  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715

    Article  CAS  Google Scholar 

  • Howie WJ, Cook RJ, Weller DM (1987) Effects of soil matrix potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77:286–292

    Article  Google Scholar 

  • Idris EES, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    Google Scholar 

  • Idris EES, Bochow H, Ross H, Borriss R (2004) Use of Bacillus subtilis as biocontrol agent. Phytohormone like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J Plant Dis Prot 111:583–597

    CAS  Google Scholar 

  • Inbar J, Chet I (1991) Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-bome plant pathogens by this bacterium. Soil Biol Biochem 23:973–978

    Article  CAS  Google Scholar 

  • Isono K, Nagatsu J, Kawashima Y, Suzuki S (1965) Studies on polyoxins, antifungal antibiotics. Part I. Isolation and characterization of polyoxins A and B. Agric Biol Chem 29:848–854

    Article  CAS  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1 (pRO101) in 2, 4-D contaminated soil. Plant Soil 189:139–144

    Article  CAS  Google Scholar 

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272–1275

    Article  PubMed  CAS  Google Scholar 

  • James WC (1981) Estimated losses of crops from plant pathogens. In: Pimentel D (ed) Handbook of pest management in agriculture, vol 1. CRC, Boca Raton, FL, pp 79–94

    Google Scholar 

  • Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis 87:1390–1394

    Article  Google Scholar 

  • Jeun YC, Park KS, Kim H (2001) Different mechanisms of induced systemic resistance and systemic acquired resistance against Colletotrichum orbiculare on the leaves of cucumber plants. Mycobiology 29:19–26

    Google Scholar 

  • Jung WJ, An KN, Jin YL, Park RD, Lim KT, Kim KY, Kim TH (2003) Biological control of damping off caused by Rhizoctonia solani using chitinase producing Paenibacillus illinoisensis KJA-424. Soil Biol Biochem 35:1261–1264

    Article  CAS  Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331

    Article  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Kennedy AC (2005) Rhizosphere. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology, 2nd edn. Pearson, Prentice Hall, Upper Saddle River, NJ, pp 242–262

    Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Kim BS, Moon SS, Hwang BK (1999) Isolation, identification and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can J Bot 77:850–858

    CAS  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW (2003) A review of mechanisms for plant growth promotion by PGPR. In: Reddy MS, Anandaraj M, Eapen SJ, Sarma YR, Kloepper JW (eds) 6th International PGPR workshop (Abstracts and short papers), 5–10 Oct 2003, Indian Institute of Spices Research, Calicut, India, pp 81–92

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Végétale et de Phytobactériologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980b) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:835–836

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotwicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trend Biotechnol 7:39–43

    Article  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kluepfel DA, Kline EL, Skipper HD, Hughes TA, Gooden DT, Drahos DJ, Barry GF, Hemming BC, Brandt EJ (1991) The release and tracking of genetically engineered bacteria in the environment. Phytopathology 81:348–352

    Google Scholar 

  • Koch B, Nielsen TH, Sorensen D, Andersen JB, Christophersen C, Molin S, Givskov M, Sorensen J, Nybroe O (2002) Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the Gac two-component regulatory system. Appl Environ Microbiol 68:4509–4516

    Article  PubMed  CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  CAS  Google Scholar 

  • Kortemaa H, Rita H, Haahtela K, Smolander A (1994) Root colonization ability of antagonistic Streptomyces griseoviridis. Plant Soil 163:77–83

    Google Scholar 

  • Koths JS, Gunner HR (1967) Establishment of a rhizosphere microflora on carnation as a means of plant protection in steamed greenhouse soils. Am Soc Hortic Sci 91:617–626

    Google Scholar 

  • Kragelund L, Hosbond C, Nybroe O (1997) Distribution of metabolic activity and phosphate starvation response of lux tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Appl Environ Microbiol 63:4920–4928

    PubMed  CAS  Google Scholar 

  • Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61:849–854

    PubMed  CAS  Google Scholar 

  • Krishnamurthy K, Gnanamanickam SS (1998) Induction of systemic resistance and salicylic acid accumulation in Oryza sativa L. in the biological suppression of rice blast cause by treatments with Pseudomonas spp. World J Microbiol Biotechnol 14:935–937

    Article  CAS  Google Scholar 

  • Kumar BSD (1999) Fusarial wilt suppression and crop improvement through two rhizobacterial strains in chick pea growing in soils infested with Fusarium oxysporum f. sp. ciceris. Biol Fertil Soils 29:87–91

    Article  Google Scholar 

  • Lagopodi AL, Ram AF, Lamers GEM, Punt P, van den Hondel CAM, Lugtenberg B, Bloemberg GV (2002) Confocal laser scanning microscopical analysis of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis lycopersici using the green fluorescent protein as a marker. Mol Plant Microbe Interact 15:172–179

    Article  PubMed  CAS  Google Scholar 

  • Landa BB, Mavrodi OV, Raaijmakers JM, McSpadden-Gardener BB, Thomashow LS, Weller DM (2002) Differential ability of genotypes of 2,4-diacetylphloroglucinol producing Pseudomonas fluorescens to colonize the roots of pea. Appl Environ Microbiol 68:3226–3237

    Article  PubMed  CAS  Google Scholar 

  • Landa BB, Mavrodi DM, Thomashow LS, Weller DM (2003) Interactions between strains of 2, 4- diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat. Phytopathology 93:982–994

    Article  PubMed  CAS  Google Scholar 

  • Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. HortScience 32:188–192

    Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334

    Article  CAS  Google Scholar 

  • Leeman M, van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995a) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995b) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Article  Google Scholar 

  • Leeman M, den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PHAM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    Article  CAS  Google Scholar 

  • Lemanceau P (1992) Effets bénéfiques de rhizobactéries sur les plantes: exemple des Pseudomonas spp. Fluorescents. Agron 12:413–437

    Article  Google Scholar 

  • Lemanceau P, Alabouvette C (1993) Suppression of fusarium wilts by fluorescent pseudomonas: mechanisms and applications. Biocontrol Sci Technol 3:219–234

    Article  Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras JM, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissimum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012

    PubMed  CAS  Google Scholar 

  • Lemanceau P, Maurhofer M, Défago G (2006) Contribution of studies on suppressive soils to the identification of bacterial biocontrol agents and to the knowledge of their modes of action. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, New York, pp 231–267

    Chapter  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Loper JE, Lindow SE (1991) A biological sensor for available iron in the rhizosphere. In: Keel C, Koller B, Défago G (eds) Plant growth-promoting rhizobacteria: progress and prospects. IOBC/WPRS Bulletin XIV, pp 177–181

    Google Scholar 

  • Loper JE, Schroth MN (1986) Importance of sidérophores in microbial interactions in the rhizosphere. In: Swinburne TR (ed) Iron siderophores and plant disease. Plenum, New York, pp 85–98

    Chapter  Google Scholar 

  • Lynch JM (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 1–10

    Google Scholar 

  • Mahadevan B, Crawford DL (1997) Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb Technol 20:489–493

    Article  CAS  Google Scholar 

  • Mahaffee WF, Bauske EM, van Vuurde JWL, van der Wolf M, van den Brink M, Kloepper JW (1997) Comparative analysis of antibiotic resistance, immunofluorescent colony staining, and a transgenic marker (bioluminescence) for monitoring the environmental fate of a rhizobacterium. Appl Environ Microbiol 63:1617–1622

    PubMed  CAS  Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Défago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production. Plant Pathol 44:40–50

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  • McSpadden Gardener BB (2004) Ecology of Bacillus and PaeniBacillus spp. in agricultural systems. Phytopathology 94:1252–1258

    Article  PubMed  CAS  Google Scholar 

  • McSpadden-Gardener BB, Mavrodi DV, Thomashow LS, Weller DM (2001) A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2, 4-diacetylphloroglucinol-producing bacteria. Phytopathology 91:44–54

    Article  PubMed  CAS  Google Scholar 

  • Merriman PR, Price RD, Kollmorgen JF, Piggott T, Ridge EH (1974) Effect of seed inoculation with Bacillus subtilis and Streptomyces griseus on the growth of cereals and carrots. Aust J Agric Res 25:219–226

    Article  Google Scholar 

  • Merzaeva OV, Shirokikh IG (2006) Colonization of plant rhizosphere by Actinomycetes of different genera. Microbiology 75:226–230

    Article  CAS  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Hofte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Miller JJ, Liljeroth E, Henken G, van Veen JA (1989) Fluctuations in the fluorescent pseudomonad and Actinomycetes populations of rhizosphere and rhizoplane during the growth of spring wheat. Can J Microbiol 36:254–258

    Article  Google Scholar 

  • Miller JJ, Liljeroth E, Willemsen-de Klein MJEIM, van Veen JA (1990) The dynamics of Actinomycetes and fluorescent pseudomonads in wheat rhizoplane and rhizosphere. Symbiosis 9:389–391

    Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Enviorn Microbiol 62:3061–3065

    CAS  Google Scholar 

  • Moyne AL, Shalby R, Cleveland TE, Tuzun S (2001) Bacillomycin, D, an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629

    Article  PubMed  CAS  Google Scholar 

  • Muller G, Raymond KN (1984) Specificity and mechanism of ferrioxamine mediated iron transport in Streptomyces pilosus. J Bacteriol 160:304–312

    PubMed  CAS  Google Scholar 

  • Muller G, Matzanke BF, Raymond KN (1984) Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio- rhodotorulic acid. J Bacteriol 160:313–318

    PubMed  CAS  Google Scholar 

  • Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polstan JE, Kloepper JW (2000) Plant growth-promoting rhizobacteria mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784

    Article  Google Scholar 

  • Nielsen TH, Sorensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sorensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    Article  PubMed  CAS  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Défago G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881

    Article  PubMed  CAS  Google Scholar 

  • Olson EH (1968) Actinomycetes isolation agar (Difco Supplementary Literature). Difco Laboratory, Detroit

    Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76

    Article  Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Banhamou N, Paulitz TC, Belanger RR (2000) Systemic induction of phytoalexins in cucumber in response to treatment with fluorescent Pseudomonads. Plant Pathol 49:523–530

    Article  CAS  Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707

    Article  PubMed  CAS  Google Scholar 

  • Park KS, Ahn IP, Kim H (2001) Systemic resistance and expression of the pathogenesis-related genes mediated by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens EXTN-1 against anthracnose disease in cucumber. Mycobiology 29:48–53

    CAS  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–34

    Article  CAS  Google Scholar 

  • Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288

    Article  PubMed  CAS  Google Scholar 

  • Powell JF, Vargas JM, Nair MG, Detweiler AR, Chandra A (2000) Management of dollar spot on creeping bentgrass with metabolites of Pseudomonas aureofaciens (TX-1). Plant Dis 84:19–24

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2, 4- Diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Leeman M, van Oorschot MMP, van der Sluis I, Schippers B, Bakker PAHM (1995) Dose–response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1081

    Article  Google Scholar 

  • Raaijmakers J, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2, 4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Anton van Leeuwenhook 81:537–547

    Article  CAS  Google Scholar 

  • Ran L, Xiang M, Zhou B, Bakker PAHM (2005) Siderophores are the main determinants of fluorescent Pseudomonas strains in suppression of grey mould in Eucalyptus urophylla. Acta Phytopathol Sinica 35:6–12

    Google Scholar 

  • Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against Cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Dis 80:891–894

    Article  Google Scholar 

  • Rothrock CS, Gottlieb D (1984) Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can J Microbiol 30:1440–1447

    Article  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Ryu C-M, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    Article  CAS  Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573

    Article  CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schmidt EL (1979) Initiation of plant root microbe interactions. Annu Rev Microbiol 33:355–376

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CS, Lorenz D, Wolf GA (2001) Biological control of the grapevine dieback fungus Eutypa lata I: screening of bacterial antagonists. J Phytopathol 149:427–435

    Article  Google Scholar 

  • Schobe RBM, vanVuurde JWL (1997) Detection and enumeration of Erwinia carotovora subsp. atroseptica using spiral plating and immunofluorescence colony staining. Can J Microbiol 43:847–853

    Article  Google Scholar 

  • Schottel JL, Shimizu K, Kinkel LL (2001) Relationships of in vitro pathogen inhibition and soil colonization to potato scab biocontrol by antagonistic Streptomyces spp. Biol Control 20:102–112

    Article  Google Scholar 

  • Shafikova TN, Romanenko AS, Borovskii GB (2003) Plasma membrane receptors for exopolysaccharides of the ring rot causal agent in potato cells. Russ J Plant Physiol 50:220–223

    Article  CAS  Google Scholar 

  • Sharifi-Tehrani A, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (1998) Biocontrol of soil-borne fungal plant diseases by 2,4- diacetylphloroglucinolproducing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur J Plant Pathol 104:631–643

    Article  CAS  Google Scholar 

  • Shishido M, Loeb BM, Chanway CP (1995) External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can J Microbiol 41:707–713

    Article  CAS  Google Scholar 

  • Silo-suh LA, Stab VE, Raffel SR, Handelsman J (1998) Target range of Zwittermicin A, an Aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37:6–11

    Article  PubMed  CAS  Google Scholar 

  • Simon E, Ridge H (1974) The use of ampicillin in a simplified selective medium for the isolation of fluorescent pseudomonads. J Appl Bacteriol 37:459–460

    Article  PubMed  CAS  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  PubMed  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant dependent enrichment and seasonal shifts revealed. Appl Enviorn Microbiol 67:4742–4751

    Article  CAS  Google Scholar 

  • Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Phytopathol 37:473–491

    Article  PubMed  CAS  Google Scholar 

  • Sneh B (1981) Use of rhizosphere chitinolytic bacteria for biological control of Fusarium oxysporum f. sp. dianthi in carnation. Phytopathol Z 100:251–256

    Article  Google Scholar 

  • Sneh B, Dupler M, Elad Y, Baker R (1984) Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium-suppressive soil. Phytopathology 74:1115–1124

    Article  Google Scholar 

  • Söderberg KH, Bååt E (1998) Bacterial activity along a young barley root measured by the thymidine and leucine incorporating techniques. Soil Biol Biochem 30:1259–1268

    Article  Google Scholar 

  • Somers E, Vanderleijden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  PubMed  CAS  Google Scholar 

  • Someya N, Tsuchiya K, Yoshida T, Noguchi MT, Akutsu K, Sawada H (2007) Co-inoculation of an antibiotic-producing bacterium and a lytic enzyme-producing bacterium for the biocontrol of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. Biocontrol Sci 12:1–6

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Stabb E, Jacobson LM, Handelsman J (1994) Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60:4404–4412

    PubMed  CAS  Google Scholar 

  • Suslow TV, Schroth MN (1982) Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72:199–206

    Article  Google Scholar 

  • Tazawa J, Watanabe K, Yoshida H, Sato M, Homma Y (2000) Simple method of detection of the strains of fluorescent Pseudomonas spp. producing antibiotics, pyrrolnitrin and phloroglucinol. Soil Microorg 54:61–67

    Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Enviorn Microbiol 56:908–912

    CAS  Google Scholar 

  • Thomashow LS, Bonsal RF, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 493–499

    Google Scholar 

  • Thrane C, Nielsen TH, Nielsen MN, Olsson S, Sorensen J (2000) Viscosinamide producing Pseudomonas fluorescens DR54 exerts biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33:139–146

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EG (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  PubMed  CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant- microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  PubMed  CAS  Google Scholar 

  • Tombolini R, Unge A, Davey ME, de Bruijn F, Jansson K (1997) Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol Ecol 22:17–28

    Article  CAS  Google Scholar 

  • Troxler J, Berling C-H, Moënne-Loccoz Y, Keel C, Défago G (1997) Interactions between the biocontrol agent Pseudomonas fluorescens CHA0 and Thielaviopsis basicola in tobacco roots observed by immunofluorescence microscopy. Plant Pathol 46:62–71

    Article  Google Scholar 

  • Umezawa H, Okami T, Hashimoto T, Suhara Y, Hamada M, Takeuchi T (1965) A new antibiotic, kasugamycin. J Antibiot Ser A 18:101–103

    CAS  Google Scholar 

  • Utkhede RS, Rahe JE (1980) Biological ontrol of onion white rot. Soil Biol Biochem 12:101–104

    Article  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon T, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic Actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635

    PubMed  CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM (2003) Signalling in rhizobacteria-plant interactions. In: De Kroon H, Visser EJW (eds) Root ecology (Ecological studies), vol 168. Springer, Berlin, pp 297–330

    Google Scholar 

  • Van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205

    Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Van Wees SCM, Pieters CMJ, Trisjssenaar A, Van’t Westende YAM, Hartog F, van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724

    Article  PubMed  Google Scholar 

  • Velazhahan R, Samiyappan R, Vidhyasekaran P (1999) Relationship between antagonistic activities of Pseudomonas fluorescens isolates against Rhizoctonia solani and their production of lytic enzymes. Z Pflanz Pflanzen 106:244–250

    CAS  Google Scholar 

  • Velusamy P, Immanuel JE, Gnanamanickam SS, Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can J Microbiol 52:56–65

    Article  PubMed  CAS  Google Scholar 

  • Vesper SJ (1987) Production of pili (fimbriae) by Pseudomonas fluorescens and a correlation with attachment to corn roots. Appl Environ Microbiol 53:1397–1405

    PubMed  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed  CAS  Google Scholar 

  • Von Der Weid I, Duarte G, Van Elsas JD, Seldin L (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153

    Article  PubMed  CAS  Google Scholar 

  • Von Der Weid I, Artursson V, Seldin L, Jansson JK (2005) Antifungal and root surface colonization properties of GFP tagged Paenibacillus brasilensis PB177. World J Microbiol Biotechnol 2(1):1591–1597

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469

    Article  Google Scholar 

  • Wendenbaum S, Demange P, Dell A, Meyer JM, Abdallah MA (1983) The structure of pyoverdine, the siderophores of Pseudomonas aeruginosa. Tetrahedron Lett 24:4877–4880

    Article  CAS  Google Scholar 

  • Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    PubMed  CAS  Google Scholar 

  • Zehnder GW, Yao C, Murphy JF, Sikora EJ, Kloepper JW (2000) Induction of resistance in tomato against Cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. Biocontrol 45:127–137

    Article  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

  • Zhang Y, Fernando WGD (2004) Zwittermicin A detection in Bacillus spp. controlling Sclerotinia sclerotiorum on canola. Phytopathol 94:S116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Bouizgarne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bouizgarne, B. (2013). Bacteria for Plant Growth Promotion and Disease Management. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Disease Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33639-3_2

Download citation

Publish with us

Policies and ethics