Skip to main content

Siderophore Producing PGPR for Crop Nutrition and Phytopathogen Suppression

  • Chapter
  • First Online:

Abstract

Deficiency of iron in crop results in iron chlorosis, makes them micronutrient deficient and hence sensitive to microbial infections. More than 60 phytopathogens are known to cause different plant diseases. These microbial diseases of crop plants are the major cause of severe global economic losses to agricultural crops. During the last 50 years, the control of most of the plant diseases has fully relied on the use of agrochemicals. Although this has resulted in increased production of agricultural commodities, it has several inherent problems like health hazards, biomagnification and development of pesticide resistance in the pests, and contamination of underground water. The increasing public awareness about these problems has stimulated interest in the use of biological control methods for controlling plant diseases. Past decade has witnessed increasing interest in the role of rhizobacteria for controlling plant diseases. In the present agricultural scenario, siderophore producing rhizobacteria has been recognized as potential biocontrol agents (BCAs) for controlling plant diseases.

On other hand consumption of Iron-deficient foods causes iron deficiency anemia (IDA). Plant growth promoting rhizobacteria (PGPR) present in close vicinity to plant roots or its surface play a crucial role in providing iron nutrition to the crops, thereby promote plant health/growth as well as suppress major phytopathogen and have been seen as sustainable and eco-friendly substitute to chemical fertilizers and chemical pesticides.

Most important biotechnological exploitation of siderophores producing PGPR in the rhizosphere region of the plant where they provide iron nutrition to the plant, serve as first defense against root invading parasites and helps in removing toxic metals from polluted soil. Siderophore producing PGPR function as BCAs, by depriving the pathogen from iron nutrition thus resulting in increased yields of crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams PB, Fravel DR (1993) Pest management. In: Lumsden RD, Vaugh JL (eds) Biologically based technologies. American Chemical Society, Washington, DC, pp 189–195

    Google Scholar 

  • Bacilio-Jiménez M, Aguilar-Flores A, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Bienfait HF (1988) Mechanism in Fe efficiency reactions of higher plants. J Plant Nutr 11:605–629

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Bloemberg GV, Wijijes AHM, Lamers GEM, Sluurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different auto fluorescent proteins in the rhizosphere; new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176

    Article  PubMed  CAS  Google Scholar 

  • Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB (2000) Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. Ecol Manag 133:81–88

    Article  Google Scholar 

  • Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001) Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14:1006–1015

    Article  PubMed  CAS  Google Scholar 

  • Chincholkar SB, Chaudhari BL, Talegaonkar SK, Kothari RM (2000) Microbial iron chelators: a tool for sustainable agriculture. In: Upadhayay RK, Mukherji KG, Chamola BP (eds) Biocontrol potential and their exploration in crop disease management, vol 1. Kluwer Academic, New York, pp 49–70

    Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka (2005) A. Endophytic colonization of Vitis vinifera L. by a plant growthpromoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Google Scholar 

  • Crowley DE, Reid CPP, Szaniszlo PJ (1987) Phytosiderophores. In: Winkelman G, vander Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. Verlag VCH, Weinheim, pp 401–425

    Google Scholar 

  • De Meyer G, Capieau K, Audenaert K, Buchala A, Metraux JP, Hofte M (1999) Nanogram amounts of salisylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance. Mol Plant Microbe Interact 12(5):450–458

    Article  PubMed  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg V, de Vanderleyden J, Mot R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis toward exudates components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • De Weger LA, Van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers S, Lugtenberg B (1987) Flagella of a plant-growth stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773

    PubMed  Google Scholar 

  • Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176

    Article  PubMed  CAS  Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998) Role of the O-antigen of lipopolysaccheride, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11:763–771

    Article  PubMed  CAS  Google Scholar 

  • Dekkers LC, Mulders IH, Phoelich CC, Chin A-Woeng TFC, Wijijes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato Fusarium oxysporum f sp. radicis lycopersici biocontrol strain Pseudomonas fluorescens WCS 365 can improve root colonization of other wild type Pseudomonas sp bacteria. Mol Plant Microbe Interact 13:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Dudeja SS, Suneja S, Khurana AL (1997) Iron acquisition system and its role in legume Rhizobium symbiosis. Indian J Microbiol 37:1–12

    Google Scholar 

  • Duffy BK (2001) Competition for nutrients. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. Wiley, New York, pp 243–244

    Google Scholar 

  • Estrella AF, Chet I (1998) Biocontrol of bacteria and phytopathogenic fungi. In: Altman A (ed) Agriculture biotechnology. Marcel Deckker, New York, pp 263–282

    Google Scholar 

  • Freitas SDS, Pizzinato MA (1997) Action of rhizobacteria on the Colletotrichum gossypii incidence and growth promotion in cotton seedlings. Summa Phytopathol 23:36–41

    Google Scholar 

  • Fusch R, Schaffer M, Goffery V, Meyer JM (2001) Siderotyping-a powerful tool for the characterization of pyoverdine. Curr Top Med Chem 1:31–35

    Article  Google Scholar 

  • Gildersleeve RR, Ocampaugh WR (1989) Green house evaluation of subterranean clover species for susceptibility to iron-deficiency chlorosis. Crop Sci 29:949–951

    Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 40:109–117

    Article  Google Scholar 

  • Glick BR, Jacobson CB, Schwartz MMK, Pastermak JJ (1994) 1-aminocycloporpane-1 carboxylic acid deaminase mutants of the plant growth promoting rhizobacteria. Can J Microbiol 40:911–915

    Article  CAS  Google Scholar 

  • Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:742–743

    Article  Google Scholar 

  • Huang Z, Bonsall PF, Mavrodi DV, Weller DM, Thomashow LS (2004) Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of Rhizoctonia root rot and in situ antibiotic production. FEMS Microbiol Ecol 49:243–251

    Article  PubMed  CAS  Google Scholar 

  • Huyer M, Page WJ (1988) Zn2+ increases siderophore production in Azotobacter vinelandii. Appl Environ Microbiol 11:2625–2631

    Google Scholar 

  • Huyer M, Page WJ (1989) Ferric reductase activity in Azotobacter vinelandii and its inhibition by Zn2+. J Bacteriol 171:4031–4037

    PubMed  CAS  Google Scholar 

  • Jamsen P (2000) Auxins and cytokinins in plant pathogen interactions—an overview. Plant Growth Regul 32:369–380

    Article  Google Scholar 

  • Johri BN, Rao CVS, Goel R (1997) Fluorescent pseudomonads in plant disease management. In: Dadarwal KR (ed) Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific, Jodhpur, pp 193–223

    Google Scholar 

  • Johri BN, Sharma A, Virdi JS (2003) Rhizobacterial diversity in India and its influence on plant health. In: Ghose TK, Ghosh P (eds) Advances in biochemical engineering/biotechnlogy, vol 84. Springer, Berlin, pp 49–89

    Google Scholar 

  • Kintu K, Dave BP, Dube HC (2001) Detection and chemical characterization of siderophores produced by certain fungi. Indian J Microbiol 41:87–91

    Google Scholar 

  • Kloepper JW (1993) Soil microbial ecology. In: Metting FB (ed) Application in agriculturally environmental management. Marcel Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW, Zehnder GW, Tuzum S, Murphy JF, Wei G, Yao C, Raupach G (1996) Proceedings of the international workshop on biological control of plant diseases. China Agricultural University Press, Beijing, pp 165–174

    Google Scholar 

  • Knee EM, Gong FC, Gao M, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant Microbe Interact 14:775–784

    Article  PubMed  CAS  Google Scholar 

  • Konetschny RS, Jung M, Meiwes J, Zahner H (1990) Staphyloferrin A: a structurally new siderophore from Staphylococci. Eur J Biochem 191:65–74

    Article  Google Scholar 

  • Kuiper I, Bloemberg GV, Noreen S, Thomas-Oates JE, Lugtenberg BJJ (2001) Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 14:1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Lemanceau P, Albouvette V (1993) Suppression of Fusarium wilts by fluorescent pseudomondas: mechanism and applications. Biocontrol Sci Technol 3:219–234

    Article  Google Scholar 

  • Loper E, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1987) Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus. J Bacteriol 169:5873–5876

    PubMed  CAS  Google Scholar 

  • Meyer JM (2000) Pyoverdins: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM, Goeffroy VA, Baida N, Gardan L, Izard D, Limanceau P, Achouak W, Pellorini NJ (2002) Siderotyping typing a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 68:2745–2753

    Article  PubMed  CAS  Google Scholar 

  • Munsch P, Geoffroy V, Altassova T, Meyer JM (2000) Application of siderotyping for characterization of Pseudomonas tolaasii and Pseudomonas reactans, isolates associated with brown blotch disease of cultivated mushrooms. Appl Environ Microbiol 66:4834–4841

    Article  PubMed  CAS  Google Scholar 

  • Nehl DB, Allen SJ, Brown JF (1996) Deleterious rhizosphere bacteria: an integrating prospective. Appl Soil Ecol 5:1–20

    Article  Google Scholar 

  • Neilands JB (1984) Siderophores of bacteria and fungi. Microbiol Sci 1:9–14

    PubMed  CAS  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    Article  PubMed  CAS  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J (2000) Structure production characteristic and fungal antagonism of tensin—a new antifungal cyclic lipopeptide from Pseudomonas fluorescence. J Appl Microbiol 89:992–1001

    Article  PubMed  CAS  Google Scholar 

  • Nomoto K, Sugiura Y, Takagi S (1987) Muggienic acids, studies on phytosiderophores. In: Winkelman G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. Verlag VCH, Weiheim, pp 401–425

    Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas species involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Page WJ (1993) Growth conditions the demonstration of siderophores and iron-repressible outer membrane proteins in soil bacteria with an emphasis on free-living soil diazotrophs. In: Barton LL, Heming BC (eds) Iron exudates in plants and soil microorganisms. Academic, San Diego, pp 75–109

    Google Scholar 

  • Pal V, Jalali I (1998) Rhizosphere bacteria for biocontrol of plant diseases. Indian J Microbiol 38:187–204

    Google Scholar 

  • Pieterse CMJ, van Pelt JA, van Wees SCM, Ton J, Leon-Kloosterziel KM, Keurentjes JJB, Verhagen BMW (2001) Rhizobacteria mediated induced systemic resistance: triggering, signaling and expression. Eur J Plant Pathol 107:51–61

    Article  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–269

    Article  PubMed  CAS  Google Scholar 

  • Postma J, Montanari M, van den Boogert PHJF (2003) Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39:57–163

    Article  Google Scholar 

  • Rane MR, Naphade BS, Sayyed RZ, Chincholkar SB (2005) Methods for microbial iron chelator (siderophore) analysis. In: Podila GK, Verma A (eds) Basic and applied research in mycorrhizae. IK International, New Delhi, pp 475–492

    Google Scholar 

  • Romheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrient in graminaceous species: an ecological approach. Plant Soil 130:127–134

    Article  Google Scholar 

  • Saikia N, Bezbruah B (1995) Iron dependent plant pathogen inhibition through Azotobacter RRL J203 isolated from iron rich acid soil. Indian J Exp Biol 35:571–575

    Google Scholar 

  • Sanchez-Contreras M, Martýn M, Villacieros M, O’Gara F, Bonilla I, Rivilla R (2002) Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. Appl Environ Microbiol 184:1587–1596

    Google Scholar 

  • Sayyed RZ (2010) Siderophore producing PGPR as eco-friendly biocontrol agent. In: Proceedings of ibio 3rd world congress of industrial biotechnology, Dalian, China, 25–27 July 2010, pp 304

    Google Scholar 

  • Sayyed RZ, Chincholkar SB (2006) Purification of siderophores of Alcaligenes feacalis on Amberlite XAD. Bioresour Technol 97(8):1026–1029

    Article  PubMed  CAS  Google Scholar 

  • Sayyed RZ, Chincholkar SB (2009) Siderophore producing A. feacalis: more biocontrol potential vis-à-vis chemical fungicide. Curr Microbiol 58(1):47–51

    Article  PubMed  CAS  Google Scholar 

  • Sayyed RZ, Chincholkar SB (2010) Growth and siderophore production Alcaligenes faecalis is influenced by heavy metals. Indian J Microbiol 50(2):179–182

    Article  PubMed  CAS  Google Scholar 

  • Sayyed RZ, Patel PR (2011) Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp and Acinetobacter sp. vis-à-vis organophosphorus fungicide. Indian. J Microbiol 51(3):266–272

    CAS  Google Scholar 

  • Sayyed RZ, Naphade BS, Chincholkar SB (2004) Ecologically competent rhizobacteria for plant growth promotion and disease management. In: Rai MK, Chikhale NJ, Thakare PV, Wadegaonkar PA, Ramteke AP (eds) Recent trends in biotechnology. Scientific, Jodhpur, pp 1–16

    Google Scholar 

  • Sayyed RZ, Naphade BS, Chincholkar SB (2005) Ecologically competent rhizobacteria for plant growth promotion and disease management. In: Rai MK, Chikhale NJ, Thakare PV, Wadegaonkar PA, Ramteke AP (eds) Recent trends in biotechnology. Scientific, Jodhpur, India, pp 1–16

    Google Scholar 

  • Sayyed RZ, Naphade BS, Chincholklar SB (2007a) Siderophore producing A. feacalis promoted the growth of Safed musali and Ashwagandha. J Med Arom Plants 29:1–5

    Google Scholar 

  • Sayyed RZ, Patel PR, Patel DC (2007b) Plant growth promoting potential of P solubilizing Pseudomonas sp occurring in acidic soil of Jalgaon. Asian J Microbiol Biotechnol Environ Sci 9(4):925–928

    Google Scholar 

  • Sayyed RZ, Patil AS, Gangurde NS, Joshi SA, Fulpagare UG, Bhamare HM (2008) Siderophore producing A. feacalis: a potent fungicide for sustainable biocontrol of groundnut phytopathogens. Res J Biotechnol 3:411–414

    Google Scholar 

  • Sayyed RZ, Naphade BS, Joshi SA, Gangurde NS, Bhamare HM, Chincholkar SB (2009) Consortium of A. feacalis and P. fluorescens promoted the growth of Arachis hypogea (Groundnut). J Asian Microbiol Biotechnol Environ Sci 1:48–51

    Google Scholar 

  • Sayyed RZ, Gangurde NS, Joshi SA, Chincholkar SB (2010) Siderophore production by Alcaligenes faecalis and its application for growth promotion in Arachis hypogea. Indian J Biotechnol 9:302–307

    CAS  Google Scholar 

  • Simons M, Permentier HP, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1997) Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 10:102–106

    Article  CAS  Google Scholar 

  • Sindhu SS, Suneja S, Dadarwal KR (1997) Plant growth promoting rhizobacteria and their role in crop productivity. In: Dadarwal KR (ed) Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific, Jodhpur, pp 149–193

    Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  PubMed  CAS  Google Scholar 

  • Thrane C, Harder NI, Neiendam NM, Sorensen J, Olson S (2000) Visconiamide producing Pseudomonas fluorescence DR 54 exerts a biocontrol effect on Pythium ultimum in sugar beet. FEMS Microbiol Ecol 33:139–146

    Article  PubMed  CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89(1):136–150

    CAS  Google Scholar 

  • Timmis-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodl DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic acid biosynthesis pathway enhances efficacy of damping off disease control by Pseudomonas fluorescens. Mol Plant Microbe Interact 13:1293–1300

    Article  Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001a) The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiol Ecol 35:57–65

    Article  PubMed  CAS  Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001b) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonization of wheat roots. FEMS Microbiol Ecol 36:21–31

    Article  PubMed  CAS  Google Scholar 

  • Van der Broek D, Chin-A-Woeng TFC, Eijkemans K, Mulders IHM, Bloemberg GV, Lugtenberg BJJ (2003) Biocontrol traits of Pseudomonas spp. are regulated by phase variation. Mol Plant Microbe Interact 16:1003–1012

    Article  PubMed  Google Scholar 

  • Van Peer R, Nilemann GJ, Schippers B (1991) Induced systemic resistance and phytoalexin accumulation in biological control of Fusarium wilts of carnation by fluorescent Pseudomonas sp. strain WCS 417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • van Wees SCM, de Swart EAM, van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salyclate-and jasmonate dependent defense pathway in Arabdopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716

    Article  PubMed  Google Scholar 

  • Wang C, Knill E, Glick B, Defago G (2000) Effect of transferring 1-amino cyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO I and its gacA derivatives CHA96 on their growth promoting and disease suppressive capacities. Can J Microbiol 46:898–907

    PubMed  CAS  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Winkelmann G, Dreschel H (1997) Microbial siderophores. In: Rehm HJ, Reed G (eds) Biotechnology, vol 7. VCH Publishers, Weinheim, pp 199–245

    Chapter  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root-to-root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Sayyed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sayyed, R.Z., Chincholkar, S.B., Reddy, M.S., Gangurde, N.S., Patel, P.R. (2013). Siderophore Producing PGPR for Crop Nutrition and Phytopathogen Suppression. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Disease Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33639-3_17

Download citation

Publish with us

Policies and ethics