Skip to main content

Structure, Functions, and Connections

  • Chapter
  • First Online:

Abstract

The hippocampus bulges into the temporal horn of the lateral ventricle, and its general appearance does indeed resemble a sea horse. It is arched around the mesencephalon and divided into three segments:

  • A body, or middle segment, which is sagittally oriented

  • A head, or anterior segment, which is transversely oriented and which shows elevations, the digitationes hippocampi

  • A tail, or posterior segment, which is also oriented transversely and which narrows, disappearing beneath the splenium

The hippocampus is bilaminar, consisting of the cornu Ammonis (or hippocampus proper) and the gyrus dentatus, with one lamina rolled up inside the other. The hippocampal sulcus remains visible as the vestigial hippocampal sulcus separating the cornu Ammonis and the gyrus dentatus. The cornu Ammonis and the gyrus dentatus are the simplest part of the cortex, the allocortex, as compared with the more complex isocortex.

The cornu Ammonis may be divided into six layers: the alveus, stratum oriens, stratum pyramidale, stratum radiatum, stratum lacunosum, and stratum moleculare.

In structure, the gyrus dentatus is simpler than the cornu Ammonis. The three layers of the allocortex are plainly visible, that is, the strata moleculare and granulosum and the polymorphic layer.

Our knowledge of the functions and connections of the hippocampus is based on an abundant body of work found in the literature. The possible functions of the hippocampus are divided into four categories: (1) learning and memory, (2) regulation of emotional behavior, (3) certain aspect of motor control, and (4) regulation of hypothalamic functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addison WHF (1915) On the rhinencephalon of Delphinus delphis. J Comp Neurol 25:497–522

    Article  Google Scholar 

  • Adolphs R, Tranel D, Damasio H, Damasio AR (1995) Fear and the human amygdala. J Neurosci 15(9):5879–5891

    PubMed  CAS  Google Scholar 

  • Agartz I, Momenan R, Rawlings RR, Kerich MJ, Hommer DW (1999) Hippocampal volume in patients with alcohol dependence. Arch Gen Psychiatry 56:356–363

    Article  PubMed  CAS  Google Scholar 

  • Aggleton JP (1986) A description of the amygdalo-hippocampal interconnections in the macaque monkey. Exp Brain Res 64:515–526

    Article  PubMed  CAS  Google Scholar 

  • Aggleton JP (1992) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, p 615

    Google Scholar 

  • Alonso JR, Hoi Sang U, Amaral DG (1996) Cholinergic innervation of the primate hippocampal formation. II. Effects of fimbria/fornix transection. J Comp Neurol 375:527–551

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Campbell MJ (1986) Transmitter systems in the primate dentate gyrus. Hum Neurobiol 5:169–180

    PubMed  CAS  Google Scholar 

  • Amaral DG, Insausti R (1990) Hippocampal formation. In: Praxinos G (ed) The human nervous system. Academic, San Diego, pp 711–755

    Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuro­science 31(3):571–591

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Insausti R, Cowan WM (1984) The commissural connections of the monkey hippocampal formation. J Comp Neurol 224:307–336

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Insausti R, Cowan WM (1987) The entorhinal cortex of the monkey. I. Cytoarchitecture organization. J Comp Neurol 264:326–355

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Price JL, Pitkanen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunctions. Wiley-Liss, New York, pp 1–66

    Google Scholar 

  • Andersen P (1975) Organization of hippocampal neurons and their interconnections. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol I, Structure and development. Plenum, New York, pp 155–175

    Chapter  Google Scholar 

  • Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13:222–238

    PubMed  CAS  Google Scholar 

  • Andersen RA, Asanuma C, Essick G, Siegel RM (1990) Cortico-cortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296:65–113

    Article  PubMed  CAS  Google Scholar 

  • Angevine JB (1975) Development of the hippocampal region. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol I, Structure and development. Plenum, New York, pp 61–94

    Chapter  Google Scholar 

  • Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Crandall PH (1984) Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 25(6):729–740

    Article  PubMed  CAS  Google Scholar 

  • Bell MA, Ball MJ (1981) Morphometric comparison of hippocampal microvasculature in ageing and demented people: diameters and densities. Acta Neuropathol 53:299–318

    Article  PubMed  CAS  Google Scholar 

  • Bentivoglio M, Kultas-Ilinsky K, Ilinsky I (1993) Limbic thalamus: structure, intrinsic organization and connections. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhauser, Boston, pp 71–123

    Google Scholar 

  • Bilkey D, Goddard GV (1985) Medial septal facilitation of hippocampal granule cell activity is mediated by inhibition of inhibitory interneurons. Brain Res 361:99–106

    Article  PubMed  CAS  Google Scholar 

  • Bischoff S (1986) Mesohippocampal dopamine system. Characterization, functional and clinical implications. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol 3. Plenum, New York, pp 1–32

    Google Scholar 

  • Blackstad TW (1956) Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J Comp Neurol 105:417–538

    Article  PubMed  CAS  Google Scholar 

  • Blackstad TW (1958) On the termination of some afferents to the hippocampus and fascia dentata. Acta Anat 35:202–214

    Article  PubMed  CAS  Google Scholar 

  • Blackstad TW, Brink K, Hem J, Jeune B (1970) Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. J Comp Neurol 138:433–450

    Article  PubMed  CAS  Google Scholar 

  • Bland BH (1986) The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol 26:1–54

    Article  PubMed  CAS  Google Scholar 

  • Braak H (1974) On the structure of the human archicortex. I. The cornu ammonis. A Golgi and pigment architectonic study. Cell Tissue Res 152:349–383

    Article  PubMed  CAS  Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Studies of brain function, vol 4. Springer, Berlin/Heidelberg/New York, pp 24–62

    Google Scholar 

  • Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Yilmazer D, Bohl J (1996) Functional anatomy of human hippocampal formation and related structures. J Child Neurol 11:265–275

    Article  PubMed  CAS  Google Scholar 

  • Bratz E (1899) Ammonshornbefunde der Epileptischen. Arch Psychiatr Nervenkr 31:820–836

    Article  Google Scholar 

  • Broca P (1878) Anatomie comparée des circonvolutions céré-brales. Le grand lobe limbique et la scissure limbique dans la série des mammifères. Rev Anthropol 1:385–498

    Google Scholar 

  • Brodal A (1947) The hippocampus and the sense of smell. A review. Brain 70:179–222

    Article  PubMed  CAS  Google Scholar 

  • Buckmaster PS, Soltesz I (1996) Neurobiology of hippocampal interneurons. A workshop review. Hippocampus 6:330–339

    Article  PubMed  CAS  Google Scholar 

  • Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MB, Sutin J (1983) Human neuroanatomy, 8th edn. Williams and Wilkins, Baltimore, pp 612–642

    Google Scholar 

  • Cerbone A, Patacchioli FR, Sadile AG (1993) A neurogenetic and morphogenetic approach to hippocampal functions based on individual differences and neurobehavioral covariations. Behav Brain Res 55:1–16

    Article  PubMed  CAS  Google Scholar 

  • Chan Palay V (1987) Somatostatin immunoreactive neurons in the human hippocampus and cortex shown by immuno-gold/silver intensification on vibratome sections: coexistence with neuropeptide Y neurons, and effects in Alzheimer-type dementia. J Comp Neurol 260(2):201–224

    Article  PubMed  CAS  Google Scholar 

  • Chronister RB, White LE (1975) Fiber architecture of the hippocampal formation: anatomy, projections and structural significance. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol I, Structure and development. Plenum, New York, pp 9–39

    Chapter  Google Scholar 

  • Collins RC (1986) Selective vulnerability of brain: new insights from the excitatory synapse. Metab Brain Dis 1(4):231–240

    Article  PubMed  CAS  Google Scholar 

  • Corsellis JAN, Bruton CJ (1983) Neuropathology of status epilepticus in humans. Adv Neurol 34:129–139

    PubMed  CAS  Google Scholar 

  • Corsellis JAN, Meldrum BS (1976) Epilepsy. In: Blackwood W, Corsellis JAN (eds) Greenfield’s neuropathology, 4th edn. Arnold, London, pp 771–795

    Google Scholar 

  • Crosby RC, Humphrey T, Lauer EW (1962) Correlative anatomy of the nervous system. Macmillan, New York, p 731

    Google Scholar 

  • Crunelli V, Forda S, Kelly JS (1985) Excitatory amino acids in the hippocampus: synaptic physiology and pharmacology. TINS 8:26–30

    CAS  Google Scholar 

  • Davis JN, Nishimo K, Moore K (1989) Noradrenergic regulation of delayed neuronal death after transient forebrain ischemia. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases. Raven, New York, pp 109–116

    Google Scholar 

  • De Reuck J, van Kerckvoorde L, de Coster W, van der Eecken H (1979) Ischemic lesions of the hippocampus and their relation to Ammon’s horn sclerosis. J Neurol 220:157–168

    Article  Google Scholar 

  • Delay J, Brion S (1969) Le syndrome de Korsakoff. Masson, Paris

    Google Scholar 

  • Devinsky O, Luciano D (1993) The contributions of cingulate cortexto human behavior. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhauser, Boston, pp 527–556

    Google Scholar 

  • Diamond DM, Fleshner M, Ingersoll N, Rose GM (1996) Psychological stress impairs spatial working memory: relevance to electrophysiological studies of hippocampal function. Behav Neurosci 110(4):661–672

    Article  PubMed  CAS  Google Scholar 

  • Doebler JA, Markesbery WR, Anthony A, Rhoads RE (1987) Neuronal RNA in relation to neuronal loss and neurofibrillary pathology in the hippocampus in Alzheimer’s disease. J Neuropathol Exp Neurol 46(1):28–39

    Article  PubMed  CAS  Google Scholar 

  • Du F, Whetsell WO, Abou-Khalil B, Blumenkopf B, Lothman EW, Schwarcz R (1993) Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy. Epilepsy Res 16:223–233

    Article  PubMed  CAS  Google Scholar 

  • Duvernoy H, Delon S, Vannson JL (1983) The vascularization of the human cerebellar cortex. Brain Res Bull 11(4):419–480

    Article  PubMed  CAS  Google Scholar 

  • Earle KM, Baldwin M, Penfield W (1953) Incisural sclerosis and temporal lobe seizures produced by hippocampal herniation at birth. Arch Neurol Gen Psychiatry 69:27–42

    Article  CAS  Google Scholar 

  • Eichenbaum H, Otto T, Cohen NJ (1994) Two functional components of the hippocampal memory system. Behav Brain Sci 17:449–518

    Article  Google Scholar 

  • Elliot Smith G (1897) The morphology of the indusium and striae lancisii. Anat Anz 13:23–27

    Google Scholar 

  • Eriksson PS, Perfilieva E, Björk-Ericksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Fleischhauer K (1959) Zur Chemoarchitektonik der Ammonsformation. Nervenarzt 194:300–301

    Google Scholar 

  • Francis PT, Cross AJ, Bowen DM (1994) Neurotransmitters and neuropeptides. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer disease. Raven, New York, pp 247–261

    Google Scholar 

  • Frederikson CJ, Klitenick MA, Manton WI, Kirkpatrick JB (1983) Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Res 273:335–339

    Article  Google Scholar 

  • Friede RL (1966) The histochemical architecture of the Ammon’shorn as related to its selective vulnerability. Acta Neuropathol 6:1–13

    Article  PubMed  CAS  Google Scholar 

  • Gallagher M, Holland PC (1994) The amygdala complex: multiple roles in associative learning and attention. Proc Natl Acad Sci USA 91:11771–11776

    Article  PubMed  CAS  Google Scholar 

  • Gastaut H, Lammers JH (1961) Anatomie du rhinencéphale. Masson, Paris

    Google Scholar 

  • Gloor P, Salanova V, Olivier A, Quesney LF (1993) The human dorsal hippocampal commissure. Brain 116:1249–1273

    Article  PubMed  Google Scholar 

  • Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptative motor control. Science 265:1826–1831

    Article  PubMed  CAS  Google Scholar 

  • Green JD, Arduini A (1954) Hippocampal electrical activity in arousal. J Neurophysiol 17:533–557

    PubMed  CAS  Google Scholar 

  • Green RC, Mesulam MM (1988) Acetylcholinesterase fiber staining in the human hippocampus and parahippocampal gyrus. J Comp Neurol 273:488–499

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Berendse HW, Meredith GE, Haber SN, Voorn P, Wolters JG, Lohman AHM (1991) Functional anatomy of the ventral limbic system-innervated striatum. In: Willner P, Scheel-Krüger J (eds) The mesolimbic dopamine system: from motivation to action. Wiley, Chichester, pp 19–59

    Google Scholar 

  • Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329:111–128

    Article  PubMed  CAS  Google Scholar 

  • Haefely W, Polc P (1986) Physiology of GABA enhancement by benzodiazepines and barbiturates. In: Olsen J (ed) Benzodiazepine/GABA receptors and chloride channels: structural and functional properties. Liss, New York, pp 97–133

    Google Scholar 

  • Haigler HJ, Cahill L, Crager M, Charles E (1985) Acetylcholine, aging and anatomy: differential effects in the hippocampus. Brain Res 362:157–160

    Article  Google Scholar 

  • Herman JP, Schäfer MKH, Young EA, Thompson R, Douglass J, Akil H, Watson SJ (1989) Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J Neurosci 9:3072–3082

    PubMed  CAS  Google Scholar 

  • Hevner RF, Wong-Riley MT (1992) Entorhinal cortex of the human, monkey, and rat: metabolic map as revealed by cytochrome oxidase. J Comp Neurol 326:451–469

    Article  PubMed  CAS  Google Scholar 

  • Hjorth-Simonsen A, Jeune B (1972) Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol 144:215–232

    Article  PubMed  CAS  Google Scholar 

  • Howe ML, Courage ML (1993) On resolving the enigma of infantile amnesia. Psychol Bull 113:305–326

    Article  PubMed  CAS  Google Scholar 

  • Humphrey T (1967) The development of the human hippocampal fissure. J Anat 101(4):655–676

    PubMed  CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20:472–481

    Article  PubMed  CAS  Google Scholar 

  • Ikonomovic MD, Sheffield R, Armstrong DM (1995) AMPA-selective glutamate receptor subtype immunoreactivity in the aged human hippocampal formation. J Comp Neurol 359:239–252

    Article  PubMed  CAS  Google Scholar 

  • Insausti R, Amaral DG (2004) Hippocampal formation. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 871–914

    Chapter  Google Scholar 

  • Insausti R, Tunon T, Sobreviela T, Insausti AM, Gonzalo LM (1995) The human entorhinal cortex: a cytoarchitectonic analysis. J Comp Neurol 355:171–198

    Article  PubMed  CAS  Google Scholar 

  • Isaacson RL (1974) The limbic system. Plenum, New York, p 292

    Book  Google Scholar 

  • Jacobs MS, Mc Farland WL, Morgane PJ (1979) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (rhinencephalon): the archicortex. Brain Res Bull 4(Suppl 1):1–108

    Article  PubMed  Google Scholar 

  • Johansen FF, Jørgensen MB, Ekström von Lubits DKJ, Diemar NH (1984) Selective dendrite damage in hippocampal CA1 stratum radiatum with unchanged axon ultrastructure and glutamate uptake after transient cerebral ischaemia in the rat. Brain Res 291:373–377

    Article  PubMed  CAS  Google Scholar 

  • Kahle W (1986) Nervous system and sensory organs. In: Kahle W, Leonhardt H, Platzer W (eds) Color atlas and textbook of human anatomy, vol 3, 3rd edn. Thieme, Stuttgart, p 374

    Google Scholar 

  • Kartsounis LD, Rudge P, Stevens JM (1995) Bilateral lesions of CA1 and CA2 fields of the hippocampus are sufficient to cause a severe amnesic syndrome in humans. J Neurol Neurosurg Psychiatry 59:95–98

    Article  PubMed  CAS  Google Scholar 

  • Kesner RP (1994) Hippocampus and memory for time. Behav Brain Sci 17:485–486

    Google Scholar 

  • Khazipov R, Bregestovski P, Ben-Ari Y (1993) Hippocampal inhibitory interneurons are functionally disconnected from excitatory inputs by anoxia. J Neurophysiol 70(6):2251–2259

    PubMed  CAS  Google Scholar 

  • Kier L, Fulbright RK, Bronen RA (1995) Limbic lobe embryology and anatomy: dissection and MR of the medial surface of the fetal cerebral hemisphere. Am J Neuroradiol 16:1847–1853

    PubMed  CAS  Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kirino T, Tamura A, Sano K (1986) A reversible type of neuronal injury following ischemia in the gerbil hippocampus. Stroke 17(3):455–459

    Article  PubMed  CAS  Google Scholar 

  • Klinger J (1948) Die makroskopische Anatomie der Ammonsformation. Denkschriften der Schweizerischen Naturfor-schenden Gesellschaft, vol 78(1). Fretz, Zurich, p 82

    Google Scholar 

  • Köhler C, Eriksson L, Davies S, Chan Palay V (1986) Neuropeptide Y innervation of the hippocampal region in the rat and monkey brain. J Comp Neurol 244:384–400

    Article  PubMed  Google Scholar 

  • König JFR, Klippel RA (1963) The rat brain. A stereotaxic atlas. Williams and Wilkins, Baltimore, p 162

    Google Scholar 

  • Kopelman MD (1993) The neuropsychology of remote memory. In: Boller F, Grafman J (eds) Handbook of neuropsycho-biology, vol 8. Elsevier, Amsterdam, pp 215–238

    Google Scholar 

  • Kotapka MJ, Graham DI, Adams JH, Gennarelli TA (1994) Hippocampal pathology in fatal human head injury without high intracranial pressure. J Neurotrauma 11(3):317–324

    Article  PubMed  CAS  Google Scholar 

  • Kudo Y, Takeda K, Yamazaki K (1990) Quin2 protects against neuronal cell death due to Ca2+ overload. Brain Res 528:48–54

    Article  PubMed  CAS  Google Scholar 

  • Lavin A, Grace AA (1994) Modulation of dorsal thalamic cell activity by the ventral pallidum: its role in the regulation of thalamocortical activity by the basal ganglia. Synapse 18:104–127

    Article  PubMed  CAS  Google Scholar 

  • LeDoux JE (1989) Cognitive emotional interactions in the brain. Cogn Emotion 3:267–289

    Article  Google Scholar 

  • LeDoux JE (1993) Emotional memory systems in the brain. Behav Brain Res 58:69–79

    Article  PubMed  CAS  Google Scholar 

  • Leonard BW, Amaral DG, Squire LR, Zola-Morgan S (1995) Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J Neurosci 15(8):5637–5659

    PubMed  CAS  Google Scholar 

  • Lopes da Silva FH, Arnolds DEAT (1978) Physiology of the hippocampus and related structures. Ann Rev Physiol 40:185–216

    Article  CAS  Google Scholar 

  • Lopes da Silva FH, Groenewegen HJ, Holshiemer J, Room P, Witter MP, van Groen TH, Wadman SJ (1985) The hippocampus as a set of partially overlapping segments with a topographically organized system of inputs and ouputs: the entorhinal cortex as a sensory gate, the medial septum as a gainsetting system and the ventral striatum as a motor interface. In: Buzsaki G, Vanderwolf CH (eds) Electrical activity of the archicortex. Akadémiai Kiado, Budapest, pp 83–106

    Google Scholar 

  • Lopez da Silva FH, Wadman WJ, Arnolds DEAT, Veeken C, Holsheimer J (1984) Hippocampus: behavior and modulation of local circuits. In: Reinoso-Suarez F, Ajmone-Marsan C (eds) Cortical integration. Raven, New York, pp 147–170

    Google Scholar 

  • Lorente de No R (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the Ammonic system. J Psychol Neurol 46(2):113–177

    Google Scholar 

  • Lynch G, Cotman CW (1975) The hippocampus as a model for studying anatomical plasticity in the adult brain. In: Isaacson RI, Pribram KH (eds) The hippocampus, vol I, Structure and development. Plenum, New York, pp 123–154

    Chapter  Google Scholar 

  • Lynch G, Rose G, Gall C (1978) Anatomical and functional aspects of the septo-hippocampal projections. Ciba Found Symp 58:5–24

    Google Scholar 

  • MacLean PF (1970) The triune brain, emotion of scientific bias. In: Schmitt FO (ed) The neurosciences, second study program. Rockefeller University Press, New York, pp 336–349

    Google Scholar 

  • Maclean PD (1992) The limbic system concept. In: Trimble MR, Bolwig TG (eds) The temporal lobes and the limbic system. Wrightson Biomedical, Petersfield, pp 1–265

    Google Scholar 

  • Mani RB, Lohr JB, Jeste DV (1986) Hippocampal pyramidal cells and aging in the human: a quantitative study of neuronal loss in sectors CA1 to CA4. Exp Neurol 94:29–40

    Article  PubMed  CAS  Google Scholar 

  • Margerison JH, Corsellis JAN (1966) Epilepsy and the temporal lobes. Brain 89:499–536

    Article  PubMed  CAS  Google Scholar 

  • Markowitsch HJ (1995a) Which brain regions are critically involved in the retrieval of old episodic memory? Brain Res Rev 21(2):117–127

    Article  PubMed  CAS  Google Scholar 

  • Markowitsch HJ (1995b) Anatomical basis of memory disorders. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 765–779

    Google Scholar 

  • Martin LJ, Powers RE, Dellovade TL, Price DL (1991) The bed nucleus-amygdala continuum in human and monkey. J Comp Neurol 309:445–485

    Article  PubMed  CAS  Google Scholar 

  • McLardy T (1962) Zinc enzymes and the hippocampal mossy fibre system. Nature 194:300–302

    Article  CAS  Google Scholar 

  • Moore RY (1975) Monoamine neurons innervating the hippocampal formation and septum: organization and response to injury. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol II. Plenum, New York, pp 215–238

    Chapter  Google Scholar 

  • Mountcastle VB (1995) The parietal system and some higher brain functions. Cereb Cortex 5:377–390

    Article  PubMed  CAS  Google Scholar 

  • Mouritzen Dam A (1979) The density of neurons in the human hippocampus. Neuropathol Appl Neurobiol 5:249–264

    Article  PubMed  CAS  Google Scholar 

  • Nauta WJH (1958) Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 81:319–340

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin/Heidelberg/New York, pp 181–183

    Book  Google Scholar 

  • Nieuwenhuys R, Voogd J, Van Huijzen C (2008) The human central nervous system: a synopsis and atlas, 4th edn. Springer, Heidelberg/New York, pp 361–386

    Google Scholar 

  • Nilges RG (1944) The arteries of the mammalian cornu ammonis. J Comp Neurol 80:177–190

    Article  Google Scholar 

  • Nunzi MG, Milan F, Polato P, Gorio A (1986) GAB Aergic neurons and coexistence of GABA and neuropeptides in the hippocampal microcircuitry. In: Ion channels in neural membranes. Liss, New York, pp 333–345

    Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, Oxford, p 570

    Google Scholar 

  • Olbrich HG, Braak H (1985) Ratio of pyramidal cells versus non-pyramidal cells in sector CA1 of the human Ammon’s horn. Anat Embryol 173(1):105–110

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Sesma MA, Wozniak DF (1993) Glutamatergic, cholinergic, and GABAergic systems in posterior cingulate cortex: interactions and possible mecanisms of limbic system disease. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhäuser, Boston, pp 557–580

    Google Scholar 

  • Ono T, Nishijo H, Uwano T (1995) Amygdala role in conditioned associative learning. Prog Neurobiol 46:401–422

    Article  PubMed  CAS  Google Scholar 

  • Onodera H, Sato G, Kogure K (1986) Lesions to Schaffer collaterals prevent ischemic death of CA1 pyramidal cells. Neurosci Lett 68:169–174

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim C, Dormont D, Biondi A, Lehéricy S, Hasboun D, Clémenceau S, Baulac M, Marsault C (1998) Loss of digitations of the hippocampal head on high resolution fast spin-echo MR: a sign of mesial temporal lobe sclerosis. AJNR Am J Neuroradiol 19:457–463

    PubMed  CAS  Google Scholar 

  • Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 38:725–743

    Article  Google Scholar 

  • Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little Brown, Boston, p 896

    Google Scholar 

  • Petsche H, Stumpf C, Gogolak G (1962) The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. I. The control of hippocampus arousal activity by the septum cells. Electroencephalogr Clin Neurophysiol 14:202–211

    Article  PubMed  CAS  Google Scholar 

  • Pinard E, Tremblay E, Ben-Ari Y, Seylaz J (1984) Blood flow compensates oxygen demand in the vulnerable CA3 region of the hippocampus during kainate-induced seizures. Neuroscience 13(4):1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Powell EW, Hines G (1975) In: Isaacson RL, Pribram KH (eds) The hippocampus, vol I, Structure and development. Plenum, New York, pp 41–59

    Chapter  Google Scholar 

  • Rakic P, Nowakowski RS (1981) The time of origin of neurons in the hippocampal region of the rhesus monkey. J Comp Neurol 196:99–128

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1909–1911) Histologie du système nerveux de l’homme et des vertébrés, vol I, II. Maloine, Paris

    Google Scholar 

  • Ramon y Cajal S (1968) The structure of Ammon’s horn. Thomas, Springfield, p 78

    Google Scholar 

  • Ridley RM, Baker HF, Harder JA, Pearson C (1996) Effects of lesions of different parts of the septo-hippocampal system in primates on learning and retention of information acquired before or after surgery. Brain Res Bull 40(1):21–32

    Article  PubMed  CAS  Google Scholar 

  • Rose M (1927) Allocortex bei Tier und Mensch. Diesogenannte Riechrinde beim Menschen und beim Affen. J Psychol Neurol 34:261–401

    Google Scholar 

  • Rosene DL, van Hoesen GW (1987) The hippocampal formation of the primate brain. A review of some comparative aspects of cytoarchitecture and connections. In: Jones EG, Peters A (eds) Cerebral cortex, vol 6, Further aspects of cortical function, including hippocampus. Plenum, New York, pp 345–456

    Chapter  Google Scholar 

  • Rothman SM (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891

    PubMed  CAS  Google Scholar 

  • Rutecki PA, Grossman RG, Armstrong D, Irish-Loewen S (1989) Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures. J Neurosurg 70:667–675

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto N, Michel JP, Kopp N, Tohyama M, Pearson J (1987) Substance P and enkephalin immunoreactive neurons in the hippocampus and related areas of the human infant brain. Neuroscience 22(3):801–812

    Article  PubMed  CAS  Google Scholar 

  • Samson Y, Wu JJ, Friedman AH, Davis JN (1990) Catecholaminergic innervation of the hippocampus in the cynomolgus monkey. J Comp Neurol 298:250–263

    Article  PubMed  CAS  Google Scholar 

  • Schaffer K (1892) Beitrag zur Histologie der Ammonshornformation. Arch Mikrosk Anat 39:611–632

    Article  Google Scholar 

  • Scharrer E (1940) Vascularization and vulnerability of the cornu ammonis in the opossum. Arch Neurol Psychiatry 44(3):483–506

    Article  Google Scholar 

  • Scharrer E (1944) The blood vessels of the nervous tissue. Q Rev Biol 19:308–318

    Article  Google Scholar 

  • Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636

    Article  PubMed  CAS  Google Scholar 

  • Schreiber SS, Baudry M (1995) Selective neuronal vulnerability in the hippocampus. A role for gene expression? TINS 18(10):446–451

    PubMed  CAS  Google Scholar 

  • Schwerdtfeger WK (1979) Direct efferent and afferent connections of the hippocampus with the neocortex in the marmoset monkey. Am J Anat 156:77–82

    Article  PubMed  CAS  Google Scholar 

  • Schwerdtfeger WK (1984) Structure and fiber connections of the hippocampus. A comparative study. Adv Anat Embryol Cell Biol 83:74

    Google Scholar 

  • Schwerdtfeger WK (1986) Light and electron microscopic data on field CA1 of the hippocampus of the squirrel monkey, Saimiri sciureus. J Hirnforsch 27:521–532

    PubMed  CAS  Google Scholar 

  • Siggins GR, Henriksen SJ, Chavkin C, Gruol D (1986) Opioid peptides epileptogenesis in the limbic system: cellular mechanisms. Adv Neurol 44:501–512

    PubMed  CAS  Google Scholar 

  • Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494

    Article  PubMed  CAS  Google Scholar 

  • Solodkin A, Van Hoesen GW (1996) Entorhinal cortex modules of the human brain. J Comp Neurol 365:610–627

    Article  PubMed  CAS  Google Scholar 

  • Sommer W (1880) Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiatr 10:631–675

    Article  Google Scholar 

  • Spielmeyer W (1927) Die Pathogenese des epileptischen Krampfes. Z Dtsch Ges Neurol Psychiatr 109:501–520

    Article  Google Scholar 

  • Spielmeyer W (1930) The anatomic substratum of the convulsive state. Arch Neurol Psychiatry 23:869–875

    Article  Google Scholar 

  • Squire LR (1986) Mechanisms of memory. Science 232(4758):1612–1619

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. TINS 11(4):170–175

    PubMed  CAS  Google Scholar 

  • Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, Zola-Morgan S, Alvarez P (1994) Functional distinctions within the medial temporal lobe memory system: what is the evidence. Behav Brain Sci 17(3):495–496

    Google Scholar 

  • Stackman RW, Walsh TJ (1995) Distinct profile of working memory errors following acute or chronic disruption of the cholinergic septohippocampal pathway. Neurobiol Learn Mem 64:226–236

    Article  PubMed  CAS  Google Scholar 

  • Stephan H (1983) Evolutionary trends in limbic structures. Neurosci Biobehav Rev 7:367–374

    Article  PubMed  CAS  Google Scholar 

  • Stephan H, Manolescu J (1980) Comparative investigations on hippocampus in insectivores and primates. Z Mikrosk Anat Forsch 94(6):1025–1050

    PubMed  CAS  Google Scholar 

  • Suzuki WA (1994) What can neuroanatomy tell us about the functional components of the hippocampal memory system? Behav Brain Sci 17(3):496–498

    Google Scholar 

  • Suzuki WA (2009) Perception and the medial temporal lobe: evaluating the current evidence. Neuron 61:657–666

    Article  PubMed  CAS  Google Scholar 

  • Suzuki WA, Amaral DG (1993) The organization of cortical inputs to the perirhinal cortices in the monkey. Abstr Soc Neurosci 16:53

    Google Scholar 

  • Suzuki WA, Amaral DG (1994) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:494–533

    Article  Google Scholar 

  • Suzuki WA, Amaral DG (2004) Functional neuroanatomy of the medial temporal lobe memory system. Cortex 40:220–222

    Article  PubMed  Google Scholar 

  • Suzuki WA, Clayton NS (2000) The hippocampus and memory: a comparative and ethological perspective. Curr Opin Neurobiol 10:768–773

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1978) The anatomical organization of septo-hippocampal projections. Ciba Found Symp 58:25–48

    Google Scholar 

  • Swanson LW (1983) The hippocampus and the concept of the limbic system. In: Seifert W (ed) Neurobiology of the hippocampus. Academic, London, pp 3–20

    Google Scholar 

  • Teyler TJ, DiScenna P (1984) The topological anatomy of the hippocampus: a clue to its function. Brain Res Bull 12:711–719

    Article  PubMed  CAS  Google Scholar 

  • Teyler TJ, DiScenna P (1985) The role of hippocampus in memory: a hypothesis. Neurosci Biobehav Rev 9:377–389

    Article  PubMed  CAS  Google Scholar 

  • Teyler TJ, Vardaris RM, Lewis D, Rawitch AB (1980) Gonadal steroid: effects of excitability of hippocampal pyramidal cells. Science 209:1017–1019

    Article  PubMed  CAS  Google Scholar 

  • Tilney F (1939) The hippocampus and its relations to the corpus callosum. J Nerv Ment Dis 89(1):433–513

    Article  Google Scholar 

  • Treves A (1995) Quantitative estimate of the information relayed by the Schaffer collaterals. J Comput Neurosci 2:259–272

    Article  PubMed  CAS  Google Scholar 

  • Trillet M (1992) Neurobiologie de la mémoire. Encéphale 18:295–303

    PubMed  Google Scholar 

  • Tryhubczak A (1975) Myeloarchitectonics of the hippocampal formation in the dog. Fol Biol 23(2):177–188

    CAS  Google Scholar 

  • Turner W (1891) The convolutions of the brain. A study in comparative anatomy. J Anat Physiol 25:105–153

    Google Scholar 

  • Uchimura J (1928) Über die Gefässversorgung des Ammons-hornes. Z Gesamte Neurol Psychiatr 112:1–19

    Article  Google Scholar 

  • Van Hoesen GW (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. TINS 5(10):345–350

    Google Scholar 

  • Van Hoesen GW (1985) Neural systems of the non-human primate forebrain implicated in memory. Ann NY Acad Sci 444:97–112

    Article  PubMed  Google Scholar 

  • Vanderwolf CH, Leung LWS, Stewart DJ (1985) Two afferent pathways mediating hippocampal rhythmical slow activity. In: Buzsaki G, Vanderwolf CH (eds) Electrical activity of the archicortex. Akadémiai Kiado, Budapest, pp 47–66

    Google Scholar 

  • Veazey RB, Amaral DG, Cowan WM (1982) The morphology and connections of the posterior hypothalamus in the Cynomolgus monkey (Macaca fascicularis). II. Efferent connections. J Comp Neurol 207:135–156

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP (1985) Brainstem-septohippocampal circuits controlling the hippocampal EEG. In: Buzsaki G, Vanderwolf CH (eds) Electrical activity of the archicortex. Akadémiai Kiado, Budapest, pp 33–45

    Google Scholar 

  • Vicq d’Azyr M (1786) Traité d’anatomie et de physiologie. Tome premier, Paris

    Google Scholar 

  • Vogt C, Vogt O (1937) Sitz und Wesen der Krankheiten im Lichte der topistischen Hirnforschung und des Varierens der Tiere, part 1. Barth, Leipzig, p 457

    Google Scholar 

  • Vogt BA, Sikes RW, Vogt LJ (1993) Anterior cingulate cortex and the medial pain system. In: Vogt BA, Gabriel M (eds) Neurobiology of the cingulate cortex and limbic thalamus. Birkhauser, Boston, pp 313–344

    Google Scholar 

  • Walaas I (1983) The hippocampus. In: Emson PC (ed) Chemical neuroanatomy. Raven, New York, pp 337–358

    Google Scholar 

  • Walker M, Chan D, Thom M (2007) Hippocampus and human disease. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The hippocampal. Oxford University Press, New York, pp 769–812

    Google Scholar 

  • West MJ (1993) Regionaly specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14:287–293

    Article  PubMed  CAS  Google Scholar 

  • West MJ, Schwerdtfeger WK (1985) An allometric study of hippocampal components. Brain Behav Evol 27:93–105

    Article  PubMed  CAS  Google Scholar 

  • Williams PL (1995) Gray’s anatomy, 38th edn. Churchill Livingstone, New York, pp 1115–1141

    Google Scholar 

  • Wilson CL, Isokawa-Akesson M, Babb TL, Engel J, Cahan LD, Crandall PH (1987) A comparative view of local and inter-hemispheric limbic pathways in humans: an evoked potential analysis. In: Engel J et al (eds) Fundamental mechanisms of human brain function. Raven, New York, pp 27–38

    Google Scholar 

  • Witter MP, Groenewegen HJ (1992) Organizational principles of hippocampal connections. In: Trimble MR, Bolwig TG (eds) The temporal lobes and the limbic system. Wrightson Biomedical, Petersfield, pp 37–60

    Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6(10):2950–2967

    PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA (1989) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9(12):4355–4370

    PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Rempel NL, Clower RP, Amaral DG (1992) Enduring memory impairment in monkeys after ischemic damage to the hippocampus. J Neurosci 12(7):2582–2596

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duvernoy, H., Cattin, F., Risold, PY. (2013). Structure, Functions, and Connections. In: The Human Hippocampus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33603-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33603-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33602-7

  • Online ISBN: 978-3-642-33603-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics