Skip to main content

The Respiratory Chain

  • Chapter
  • First Online:
Principles of Bioenergetics

Abstract

The mitochondrial electron transport respiratory chain of higher animals is described. The main principles of energy conservation in the form of electrochemical potential of hydrogen ions are presented. Structural and functional properties of NADH: quinone-oxidoreductase, quinol: cytochrome c-oxidoreductase, and cytochrome c oxidase (complexes I, II, and IV) are described in detail. Possible mechanisms of transmembrane translocation of hydrogen ions by these enzymes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to note that it is the standard redox potentials (E 0 ′) that are given both in the text and in Fig. 4.3. The real values of redox potentials (E) in a cell can differ substantially from those E 0 ′ values because of the difference in concentrations of corresponding oxidized and reduced forms of the redox compounds involved.

  2. 2.

    In the case of enterobacteria, NDH-1 consists of 13 subunits—not because of the lack of one of the main polypeptides, but rather due to fusion of the genes of two subunits (nuoC and nuoD) into one elongated gene (nuoCD).

  3. 3.

    We note that this principle (i.e. the fact that the mitochondrial genome possesses only the genes of the most hydrophobic subunits) is characteristic also for other respiratory chain components. Transport of such hydrophobic polypeptides through the cytoplasm and across the outer mitochondrial membrane would be very difficult. That is probably why the corresponding genes were left in the mitochondrial genome instead of being transferred together with the vast majority of other mitochondrial protein genes into the nucleus. This seems to be a likely explanation of why this unique organelle has kept its own genome.

  4. 4.

    Complex I from Thermus thermophilus, when compared to other homologous proteins, contains an extra [4Fe–4S] cluster (N7). But this cofactor is not conservative. It seems not to participate in electron transfer from NADH to quinone.

  5. 5.

    The radical form Y• is considered to be formed from the Tyr-244 residue. Generation of such an unusual and extremely reactive radical is probably the reason for formation of the covalent bond between Tyr-244 and a nearby His-240. This covalent bond probably stabilizes the radical form, which helps to avoid destruction of the protein.

References

  • Argov Z, Bank WJ, Maris J, Eleff S, Kennaway NG, Olson RE, Chance B (1986) Treatment of mitochondrial myopathy due to complex III deficiency with vitamins K3 and C: A 31P-NMR follow-up study. Annal Neurology 19:598–602

    Article  Google Scholar 

  • Belevich I, Verkhovsky MI (2008) Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid Redox Signal 10:1–29

    Article  Google Scholar 

  • Bloch D, Belevich I, Jasaitis A, Ribacka C, Puustinen A, Verkhovsky MI, Wikström M (2004) The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. Proc Natl Acad Sci USA 101:529–533

    Article  ADS  Google Scholar 

  • Efremov RG, Sazanov LA (2011) Structure of the membrane domain of respiratory complex I. Nature 476:414–420

    Article  ADS  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    Article  ADS  Google Scholar 

  • Eleff S, Kennaway NG, Buist NR, Darley-Usmar VM, Capaldi RA, Bank WJ, Chance B (1984) 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc Natl Acad Sci USA 81:3529–3533

    Article  ADS  Google Scholar 

  • Engelhardt WA (1930) Ortho- und pyrophosphate im Aeroben und Anaeroben Stoffwechsel der Blutzellen. Biochem Z 251:16–21

    Google Scholar 

  • Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5

    Article  Google Scholar 

  • Galante YM, Hatefi Y (1978) Resolution of complex I and isolation of NADH dehydrogenase and an iron-sulfur protein. Methods Enzymol 53:15–21

    Article  Google Scholar 

  • Galkin AS, Grivennikova VG, Vinogradov AD (1999) H+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles. FEBS Lett 451:157–161

    Article  Google Scholar 

  • Grivennikova VG, Ushakova AV, Cecchini G, Vinogradov AD (2003) Unidirectional effect of lauryl sulfate on the reversible NADH:ubiquinone oxidoreductase (Complex I). FEBS Lett 549:39–42

    Article  Google Scholar 

  • Guénebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T (1998) Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 276:105–112

    Article  Google Scholar 

  • Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 1604:135–150

    Article  Google Scholar 

  • Hunte C, Koepke J, Lange C, Rossmanith T, Michel H (2000) Structure at 2.3 Å resolution of the cytochrome bc 1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 8:669–684

    Article  Google Scholar 

  • Hunte C, Palsdottir H, Trumpower BL (2003) Protonmotive pathways and mechanisms in the cytochrome bc 1 complex. FEBS Lett 545:39–46

    Article  Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451

    Article  ADS  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Ã… resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    Article  ADS  Google Scholar 

  • Leif H, Weidner U, Berger A, Spehr V, Braun M, van Heek P, Friedrich T, Ohnishi T, Weiss H (1993) Escherichia coli NADH dehydrogenase I, a minimal form of the mitochondrial complex I. Biochem Soc Trans 21:998–1001

    Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Glynn Research, Bodmin

    Google Scholar 

  • Mitchell P (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 62:327–367

    Article  Google Scholar 

  • Morgner N, Zickermann V, Kerscher S, Wittig I, Abdrakhmanova A, Barth HD, Brutschy B, Brandt U (2008) Subunit mass fingerprinting of mitochondrial complex I. Biochim Biophys Acta 1777:1384–1391

    Article  Google Scholar 

  • Ohnishi T (1998) Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1364:186–206

    Article  Google Scholar 

  • Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 Ã… resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci U S A 94:10547–10553

    Article  ADS  Google Scholar 

  • Papa S, Brunori M (2011) Allosteric cooperativity in respiratory proteins. Biochim Biophys Acta 1807:1251–1252

    Article  Google Scholar 

  • Papa S, Guerrieri F, Lorusso M, Simone S (1973) Proton translocation and energy transduction in mitochondria. Biochemie 55:703–716

    Article  Google Scholar 

  • Rich PR, Heathcote P (1983) Light-activated proton-motive force generation in lipid vesicles containing cytochrome bc 1 complex and bacterial reaction centres. Biochim Biophys Acta 725:332–340

    Article  Google Scholar 

  • Sato K, Nishina Y, Setoyama C, Miura R, Shiga K (1999) Unusually high standard redox potential of acrylyl-CoA/propionyl-CoA couple among enoyl-CoA/acyl-CoA couples: a reason for the distinct metabolic pathway of propionyl-CoA from longer acyl-CoAs. J Biochem 126:668–675

    Article  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436

    Article  ADS  Google Scholar 

  • Skulachev VP (1973) Redox and hydrolytic generators of electric potential (∆ψ) in coupling membranes. Inter Congr Biochem Abstr 9:208

    Google Scholar 

  • Skulachev VP (1974) Enzymic generators of membrane potential in mitochondria. Ann NY Acad Sci 227:188–202

    Article  ADS  Google Scholar 

  • Skulachev VP, Maslov SP (1960) The role of the noncoupled oxidation in thermoregulation. Biokhimiia 25:1058–1064 (in Russian)

    Google Scholar 

  • Takano T, Dickerson RE (1980) Redox conformation changes in refined tuna cytochrome c. Proc Natl Acad Sci U S A 77:6371–6375

    Article  ADS  Google Scholar 

  • Tocilescu MA, Zickermann V, Zwicker K, Brandt U (2010) Quinone binding and reduction by respiratory complex I. Biochim Biophys Acta 1797:1883–1890

    Article  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144

    Article  ADS  Google Scholar 

  • Wikström M (1977) Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266:271–273

    Article  ADS  Google Scholar 

  • Wikström M (1984) Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett 169:300–304

    Article  Google Scholar 

  • Wikström M (2004) Cytochrome c oxidase: 25 years of the elusive proton pump. Biochim Biophys Acta 1655:241–247

    Article  Google Scholar 

  • Wikström M, Krab K, Saraste M (1981) Cytochrome oxidase, a synthesis. Academic Press, London

    Google Scholar 

  • Wood PM (1983) Why do c-type cytochromes exist? FEBS Lett 164:223–226

    Article  Google Scholar 

  • Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria. Science 277:60–66

    Article  Google Scholar 

  • Yagi T (1990) Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms. Arch Biochem Biophys 281:305–311

    Article  Google Scholar 

  • Zhang Z, Huang L, Chi Y-I, Kim KK, Crofts AR, Berry EA, Kim S-H (1998) Electron transfer by domain movement in cytochrome bc 1. Nature 392:677–684

    Article  ADS  Google Scholar 

  • Zhang H, Primak A, Cape J, Bowman MK, Kramer DM, Cramer WA (2004) Characterization of the high-spin heme x in the cytochrome b 6 f complex of oxygenic photosynthesis. Biochemistry 43:16329–16336

    Article  Google Scholar 

  • Zharova TV, Vinogradov AD (1997) A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose. Biochim Biophys Acta 1320:256–264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Skulachev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skulachev, V.P., Bogachev, A.V., Kasparinsky, F.O. (2013). The Respiratory Chain . In: Principles of Bioenergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33430-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33430-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33429-0

  • Online ISBN: 978-3-642-33430-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics