Skip to main content

The Stellar IMF at Very Low Metallicities

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘12

Abstract

The theory for the formation of the first population of stars (Pop. III) predicts an initial mass function (IMF) dominated by high-mass stars, in contrast to the present-day IMF, which tends to yield mostly stars with masses less than 1 M. The leading theory for the transition in the characteristic stellar mass predicts that the cause is the extra cooling provided by increasing metallicity. In particular, dust can overtake H2 as the leading coolant at very high densities. The aim of this work is to determine the influence of dust cooling on the fragmentation of very low metallicity gas. To investigate this, we make use of high-resolution hydrodynamic simulations with sink particles to replace contracting protostars, and analyze the collapse and further fragmentation of star-forming clouds. We follow the thermodynamic response of the gas by solving the full thermal energy equation, and also track the behavior of the dust temperature and the chemical evolution of the gas. We model four clouds with different metallicities (10− 4, 10− 5, 10− 6Z, and 0), and determine the properties of each cloud at the point at which it undergoes gravitational fragmentation. We find evidence for fragmentation in all four cases, and hence conclude that there is no critical metallicity below which fragmentation is impossible. Nevertheless, there is a clear change in the behavior of the clouds at \(\mathrm{Z} = 1{0}^{-5}\) Z, caused by the fact that at this metallicity, fragmentation takes longer to occur than accretion, leading to a flat mass function at lower metallicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \([\mathrm{X}/\mathrm{Y}] =\log _{10}(\mathrm{N}_{\mathrm{X}}/\mathrm{N}_{\mathrm{Y}})_{\star } -\log _{10}(\mathrm{N}_{\mathrm{X}}/\mathrm{N}_{\mathrm{Y}})_{\odot }\), for elements X and Y, where ⋆ denotes the gas in question, and where NX and NY are the mass fractions of the elements X and Y.

References

  1. Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93

    Article  Google Scholar 

  2. Banerjee, R., Pudritz, R. E., & Anderson, D. W. 2006, MNRAS, 373, 1091

    Article  Google Scholar 

  3. Bate, M. R., Bonnell, I. A., & Price, N. M. 1995, MNRAS, 277, 362

    Google Scholar 

  4. Bate, M. R. & Burkert, A. 1997, MNRAS, 288, 1060

    Google Scholar 

  5. Bonnor, W. B. 1956, MNRAS, 116, 351

    MathSciNet  Google Scholar 

  6. Bromm, V., Coppi, P. S., & Larson, R. B. 2002, ApJ, 564, 23

    Article  Google Scholar 

  7. Bromm, V., Ferrara, A., Coppi, P. S., & Larson, R. B. 2001, MNRAS, 328, 969

    Article  Google Scholar 

  8. Bromm, V. & Loeb, A. 2003, Nature, 425, 812

    Article  Google Scholar 

  9. Chabrier, G. 2003, PASP, 115, 763

    Article  Google Scholar 

  10. Clark, P. C., Glover, S. C. O., & Klessen, R. S. 2008, ApJ, 672, 757

    Article  Google Scholar 

  11. Clark, P. C., Glover, S. C. O., Klessen, R. S., & Bromm, V. 2011a, ApJ, 727, 110

    Article  Google Scholar 

  12. Clark, P. C., Glover, S. C. O., Smith, R. J., et al. 2011b, Science, 331, 1040

    Article  Google Scholar 

  13. Dopcke, G., Glover, S. C. O., Clark, P. C., & Klessen, R. S. 2011, ApJ, 729, L3

    Article  Google Scholar 

  14. Ebert, R. 1955, ZAp, 37, 217

    MATH  Google Scholar 

  15. Frebel, A., Johnson, J. L., & Bromm, V. 2007, MNRAS, 380, L40

    Google Scholar 

  16. Goldsmith, P. F. 2001, ApJ, 557, 736

    Article  Google Scholar 

  17. Greif, T. H., Bromm, V., Clark, P. C., et al. 2012, ArXiv e-prints

    Google Scholar 

  18. Greif, T. H., Springel, V., White, S. D. M., et al. 2011, ApJ, 737, 75

    Article  Google Scholar 

  19. Hollenbach, D. & McKee, C. F. 1979, ApJS, 41, 555

    Article  Google Scholar 

  20. Hollenbach, D. & McKee, C. F. 1989, ApJ, 342, 306

    Article  Google Scholar 

  21. Jappsen, A.-K., Klessen, R. S., Glover, S. C. O., & Mac Low, M.-M. 2009a, ApJ, 696, 1065

    Article  Google Scholar 

  22. Jappsen, A.-K., Klessen, R. S., Larson, R. B., Li, Y., & Mac Low, M.-M. 2005, A&A, 435, 611

    Article  Google Scholar 

  23. Jappsen, A.-K., Mac Low, M.-M., Glover, S. C. O., Klessen, R. S., & Kitsionas, S. 2009b, ApJ, 694, 1161

    Article  Google Scholar 

  24. Kroupa, P. 2002, Science, 295, 82

    Article  Google Scholar 

  25. Omukai, K. 2000, ApJ, 534, 809

    Article  Google Scholar 

  26. Omukai, K., Hosokawa, T., & Yoshida, N. 2010, ApJ, 722, 1793

    Article  Google Scholar 

  27. Omukai, K., Tsuribe, T., Schneider, R., & Ferrara, A. 2005, ApJ, 626, 627

    Article  Google Scholar 

  28. O’Shea, B. W. & Norman, M. L. 2007, ApJ, 654, 66

    Article  Google Scholar 

  29. Santoro, F. & Shull, J. M. 2006, ApJ, 643, 26

    Article  Google Scholar 

  30. Schneider, R., Ferrara, A., Natarajan, P., & Omukai, K. 2002, ApJ, 571, 30

    Article  Google Scholar 

  31. Schneider, R. & Omukai, K. 2010, MNRAS, 402, 429

    Article  Google Scholar 

  32. Schneider, R., Omukai, K., Bianchi, S., & Valiante, R. 2012, MNRAS, 419, 1566

    Article  Google Scholar 

  33. Schneider, R., Omukai, K., Inoue, A. K., & Ferrara, A. 2006, MNRAS, 369, 1437

    Article  Google Scholar 

  34. Smith, B. D. & Sigurdsson, S. 2007, ApJ, 661, L5

    Article  Google Scholar 

  35. Smith, B. D., Turk, M. J., Sigurdsson, S., O’Shea, B. W., & Norman, M. L. 2009, ApJ, 691, 441

    Article  Google Scholar 

  36. Smith, R. J., Glover, S. C. O., Clark, P. C., Greif, T., & Klessen, R. S. 2011, MNRAS, 414, 3633

    Article  Google Scholar 

  37. Springel, V. 2005, MNRAS, 364, 1105

    Article  Google Scholar 

  38. Stacy, A., Greif, T. H., & Bromm, V. 2012, MNRAS, 2508

    Google Scholar 

  39. Tsuribe, T. & Omukai, K. 2006, ApJ, 642, L61

    Article  Google Scholar 

  40. Tsuribe, T. & Omukai, K. 2008, ApJ, 676, L45

    Article  Google Scholar 

  41. Yoshida, N., Omukai, K., & Hernquist, L. 2008, Science, 321, 669

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support from the High Performance Computing Center Stuttgart (HLRS) of the University of Stuttgart. The present work is supported by the Baden-Württemberg Stiftung in the program Internationale Spitzenforschung via contract P-LS-SPII/18, the German Bundesministerium für Bildung und Forschung via the ASTRONET project STAR FORMAT (grant 05A09VHA), a Frontier grant of Heidelberg University sponsored by the German Excellence Initiative, the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg (IMPRS-HD). All computations described here were performed at the Leibniz-Rechenzentrum, National Supercomputer HLRB-II (Bayerische Akademie der Wissenschaften), Jülich Supercomputing Centre – Jülich Research on Petaflop Architectures, and on the HPC-GPU Cluster Kolob (University of Heidelberg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Dopcke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dopcke, G., Glover, S.C.O., Clark, P.C., Klessen, R.S. (2013). The Stellar IMF at Very Low Metallicities. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_7

Download citation

Publish with us

Policies and ethics