Skip to main content

Navigating Interpretability Issues in Evolving Fuzzy Systems

  • Conference paper
Scalable Uncertainty Management (SUM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7520))

Included in the following conference series:

  • 1352 Accesses

Abstract

In this position paper, we are investigating interpretability issues in the context of evolving fuzzy systems (EFS). Current EFS approaches, developed during the last years, are basically providing methodologies for precise modeling tasks, i.e. relations and system dependencies implicitly contained in on-line data streams are modeled as accurately as possible. This is achieved by permanent dynamic updates and evolution of structural components. Little attention has been paid to the interpretable power of these evolved systems, which, however, originally was one fundamental strength of fuzzy models over other (data-driven) model architectures. This paper will present the (little) achievements already made in this direction, discuss new concepts and point out open issues for future research. Various well-known and important interpretability criteria will serve as basis for our investigations.

This work was funded by the Austrian fund for promoting scientific research (FWF, contract number I328-N23, acronym IREFS). This publication reflects only the authors’ views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelov, P., Filev, D.: Simpl_eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models. In: Proceedings of FUZZ-IEEE 2005, Reno, Nevada, U.S.A., pp. 1068–1073 (2005)

    Google Scholar 

  2. Angelov, P., Filev, D., Kasabov, N.: Evolving Intelligent Systems — Methodology and Applications. John Wiley & Sons, New York (2010)

    Book  Google Scholar 

  3. Angelov, P.P.: Evolving Takagi-Sugeno fuzzy systems from streaming data, eTS+. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications, pp. 21–50. John Wiley & Sons, New York (2010)

    Chapter  Google Scholar 

  4. Angelov, P.P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 34(1), 484–498 (2004)

    Article  Google Scholar 

  5. Angelov, P.P., Lughofer, E., Zhou, X.: Evolving fuzzy classifiers using different model architectures. Fuzzy Sets and Systems 159(23), 3160–3182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bikdash, M.: A highly interpretable form of Sugeno inference systems. IEEE Transactions on Fuzzy Systems 7(6), 686–696 (1999)

    Article  Google Scholar 

  7. Casillas, J., Cordon, O., Herrera, F., Magdalena, L.: Interpretability Issues in Fuzzy Modeling. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  8. Cheng, W.Y., Juang, C.F.: An incremental support vector machine-trained ts-type fuzzy system for online classification problems. Fuzzy Sets and Systems 163(1), 24–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dy, J.G., Brodley, C.E.: Feature selection for unsupervised learning. Journal of Machine Learning Research 5, 845–889 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Feng, J.: An intelligent decision support system based on machine learning and dynamic track of psychological evaluation criterion. In: Kacpzryk, J. (ed.) Intelligent Decision and Policy Making Support Systems. Springer, Heidelberg (2008)

    Google Scholar 

  11. Gacto, M.J., Alcala, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures. Information Sciences 181(20), 4340–4360 (2011)

    Article  Google Scholar 

  12. Kalhor, A., Araabi, B.N., Lucas, C.: An online predictor model as adaptive habitually linear and transiently nonlinear model. Evolving Systems 1(1), 29–41 (2010)

    Article  Google Scholar 

  13. Korbicz, J., Koscielny, J.M., Kowalczuk, Z., Cholewa, W.: Fault Diagnosis - Models, Artificial Intelligence and Applications. Springer, Heidelberg (2004)

    Google Scholar 

  14. Leng, G., McGinnity, T.M., Prasad, G.: An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets and Systems 150(2), 211–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leng, G., Zeng, X.-J., Keane, J.A.: An improved approach of self-organising fuzzy neural network based on similarity measures. Evolving Systems 3(1), 19–30 (2012)

    Article  Google Scholar 

  16. Lima, E., Hell, M., Ballini, R., Gomide, F.: Evolving fuzzy modeling using participatory learning. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications, pp. 67–86. John Wiley & Sons, New York (2010)

    Chapter  Google Scholar 

  17. Ljung, L.: System Identification: Theory for the User. Prentice Hall PTR, Prentic Hall Inc., Upper Saddle River, New Jersey (1999)

    Google Scholar 

  18. Lughofer, E.: Evolving Fuzzy Systems — Methodologies, Advanced Concepts and Applications. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  19. Lughofer, E.: On-line incremental feature weighting in evolving fuzzy classifiers. Fuzzy Sets and Systems 163(1), 1–23 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lughofer, E., Bouchot, J.-L., Shaker, A.: On-line elimination of local redundancies in evolving fuzzy systems. Evolving Systems 2(3), 165–187 (2011)

    Article  Google Scholar 

  21. Lughofer, E., Eitzinger, C., Guardiola, C.: On-line quality control with flexible evolving fuzzy systems. In: Sayed-Mouchaweh, M., Lughofer, E. (eds.) Learning in Non-Stationary Environments: Methods and Applications. Springer, New York (2012)

    Google Scholar 

  22. Lughofer, E., Hüllermeier, E.: On-line redundancy elimination in evolving fuzzy regression models using a fuzzy inclusion measure. In: Proceedings of the EUSFLAT 2011 Conference, Aix-Les-Bains, France, pp. 380–387. Elsevier (2011)

    Google Scholar 

  23. Lughofer, E., Hüllermeier, E., Klement, E.P.: Improving the interpretability of data-driven evolving fuzzy systems. In: Proceedings of EUSFLAT 2005, Barcelona, Spain, pp. 28–33 (2005)

    Google Scholar 

  24. Pal, N.R., Pal, K.: Handling of inconsistent rules with an extended model of fuzzy reasoning. Journal of Intelligent and Fuzzy Systems 7, 55–73 (1999)

    Google Scholar 

  25. Ramos, J.V., Dourado, A.: Pruning for interpretability of large spanned eTS. In: Proceedings of the 2006 International Symposium on Evolving Fuzzy Systems (EFS 2006), Lake District, UK, pp. 55–60 (2006)

    Google Scholar 

  26. Rong, H.-J.: Sequential adaptive fuzzy inference system for function approximation problems. In: Sayed-Mouchaweh, M., Lughofer, E. (eds.) Learning in Non-Stationary Environments: Methods and Applications. Springer, New York (2012)

    Google Scholar 

  27. Rosemann, N., Brockmann, W., Neumann, B.: Enforcing local properties in online learning first order TS-fuzzy systems by incremental regularization. In: Proceedings of IFSA-EUSFLAT 2009, Lisbon, Portugal, pp. 466–471 (2009)

    Google Scholar 

  28. Sayed-Mouchaweh, M., Lughofer, E.: Learning in Non-Stationary Environments: Methods and Applications. Springer, New York (2012)

    Book  Google Scholar 

  29. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics 15(1), 116–132 (1985)

    MATH  Google Scholar 

  30. Wang, W., Vrbanek, J.: An evolving fuzzy predictor for industrial applications. IEEE Transactions on Fuzzy Systems 16(6), 1439–1449 (2008)

    Article  Google Scholar 

  31. Wetter, T.: Medical Decision Support Systems. In: Brause, R., Hanisch, E. (eds.) ISMDA 2000. LNCS, vol. 1933, pp. 1–3. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  32. Yen, J., Wang, L., Gillespie, C.W.: Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Transactions on Fuzzy Systems 6(4), 530–537 (1998)

    Article  Google Scholar 

  33. Zhou, S.M., Gan, J.Q.: Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy systems modelling. Fuzzy Sets and Systems 159(23), 3091–3131 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lughofer, E. (2012). Navigating Interpretability Issues in Evolving Fuzzy Systems. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds) Scalable Uncertainty Management. SUM 2012. Lecture Notes in Computer Science(), vol 7520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33362-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33362-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33361-3

  • Online ISBN: 978-3-642-33362-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics