Skip to main content

Type II Toxin-Antitoxins Loci: The relBE Family

  • Chapter
  • First Online:

Abstract

relBE of Escherichia coli K-12 is a paradigm TA locus. Here, I describe the discovery of relBE and review the genetic, physiological, biochemical and structural analyses that have led to important insights into TA biology. Five relBE homologues of K-12 are also described while the 6th (mqsRA) is treated in a separate Chapter. Finally, a discussion of the possible biological functions of relBE and other type II TA loci sets the stage for future work on prokaryotic type II TA loci.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afif, H., Allali, N., Couturier, M., & Van Melderen, L. (2001). The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Molecular Microbiology, 41, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Anantharaman, V., & Aravind, L. (2003). New connections in the prokaryotic toxin–antitoxin network: Relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biology, 4, R81.

    Article  PubMed  Google Scholar 

  • Andreev, D., Hauryliuk, V., Terenin, I., Dmitriev, S., Ehrenberg, M., & Shatsky, I. (2008). The bacterial toxin RelE induces specific mRNA cleavage in the A site of the eukaryote ribosome. RNA, 14, 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.

    Article  PubMed  CAS  Google Scholar 

  • Barbosa, L. C., Garrido, S. S., Garcia, A., Delfino, D. B., & Marchetto, R. (2010). Function inferences from a molecular structural model of bacterial ParE toxin. Bioinformation, 4, 438–440.

    Article  PubMed  Google Scholar 

  • Bech, F. W., Jorgensen, S. T., Diderichsen, B., & Karlstrom, O. H. (1985). Sequence of the Relb Transcription Unit from Escherichia-Coli and Identification of the RelB Gene. EMBO Journal, 4, 1059–1066.

    PubMed  CAS  Google Scholar 

  • Bigger, J. W. (1944). Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet, ii, 497–500.

    Article  Google Scholar 

  • Blower, T. R., Pei, X. Y., Short, F. L., Fineran, P. C., Humphreys, D. P., Luisi, B. F., et al. (2011). A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nature Structural and Molecular Biology, 18, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Boe, L., Gerdes, K., & Molin, S. (1987). Effects of genes exerting growth inhibition and plasmid stability on plasmid maintenance. Journal of Bacteriology, 169, 4646–4650.

    PubMed  CAS  Google Scholar 

  • Bordes, P., Cirinesi, A. M., Ummels, R., Sala, A., Sakr, S., Bitter, W., et al. (2011). SecB-like chaperone controls a toxin–antitoxin stress-responsive system in mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the U S A, 108, 8438–8443.

    Article  CAS  Google Scholar 

  • Brown, J. M., & Shaw, K. J. (2003). A novel family of Escherichia coli toxin–antitoxin gene pairs. Journal of Bacteriology, 185, 6600–6608.

    Article  PubMed  CAS  Google Scholar 

  • Brown, B. L., Grigoriu, S., Kim, Y., Arruda, J. M., Davenport, A., Wood, T. K., et al. (2009). Three dimensional structure of the MqsR:MqsA complex: A novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathogens, 5, e1000706.

    Article  PubMed  Google Scholar 

  • Chadani, Y., Ono, K., Ozawa, S., Takahashi, Y., Takai, K., Nanamiya, H., et al. (2010). Ribosome rescue by Escherichia coli ArfA (YhdL) in the absence of trans-translation system. Molecular Microbiology, 78, 796–808.

    Article  PubMed  Google Scholar 

  • Cherny, I., & Gazit, E. (2004). The YefM antitoxin defines a family of natively unfolded proteins—implications as a novel antibacterial target. Journal of Biological Chemistry, 279, 8252–8261.

    Article  PubMed  CAS  Google Scholar 

  • Cherny, I., Overgaard, M., Borch, J., Bram, Y., Gerdes, K., & Gazit, E. (2007). Structural and thermodynamic characterization of the Escherichia coli RelBE toxin–antitoxin system: Indication for a functional role of differential stability. Biochemistry, 46, 12152–12163.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, S. K., & Gerdes, K. (2003). RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Molecular Microbiology, 48, 1389–1400.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, S. K., & Gerdes, K. (2004). Delayed-relaxed response explained by hyperactivation of RelE. Molecular Microbiology, 53, 587–597.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, S. K., Mikkelsen, M., Pedersen, K., & Gerdes, K. (2001). RelE, a global inhibitor of translation, is activated during nutritional stress. Proceedings of the National Academy of Sciences of the U S A, 98, 14328–14333.

    Article  CAS  Google Scholar 

  • Christensen, S. K., Maenhaut-Michel, G., Mine, N., Gottesman, S., Gerdes, K., & Van Melderen, L. (2004). Overproduction of the lon protease triggers inhibition of translation in Escherichia coli: Involvement of the yefM-yoeB toxin–antitoxin system. Molecular Microbiology, 51, 1705–1717.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, S. K., Pedersen, K., Hansen, F. G., & Gerdes, K. (2003). Toxin–antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. Journal of Molecular Biology, 332, 809–819.

    Article  PubMed  CAS  Google Scholar 

  • Christensen-Dalsgaard, M., & Gerdes, K. (2006). Two higBA loci in the Vibrio cholerae superintegron encode mRNA cleaving enzymes and can stabilize plasmids. Molecular Microbiology, 62, 397–411.

    Article  PubMed  CAS  Google Scholar 

  • Christensen-Dalsgaard, M., & Gerdes, K. (2008). Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms. Nucleic Acids Research, 36, 6472–6481.

    Article  PubMed  CAS  Google Scholar 

  • Christensen-Dalsgaard, M., Jørgensen, M. G., & Gerdes, K. (2010). Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Molecular Microbiology, 75, 333–348.

    Article  PubMed  CAS  Google Scholar 

  • Coles, M., Djuranovic, S., Soding, J., Frickey, T., Koretke, K., Truffault, V., et al. (2005). AbrB-like transcription factors assume a swapped hairpin fold that is evolutionarily related to double-psi beta barrels. Structure, 13, 919–928.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, C. R., Daugherty, A. J., Tachdjian, S., Blum, P. H., & Kelly, R. M. (2009). Role of vapBC toxin–antitoxin loci in the thermal stress response of Sulfolobus solfataricus. Biochemical Society Transactions, 37, 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Dao-Thi, M. H., Van Melderen, L., De Genst, E., Afif, H., Buts, L., Wyns, L., et al. (2005). Molecular basis of gyrase poisoning by the addiction toxin CcdB. Journal of Molecular Biology, 348, 1091–1102.

    Article  PubMed  CAS  Google Scholar 

  • De Fernandez-Henestrosa, A. R., Ogi, T., Aoyagi, S., Chafin, D., Hayes, J. J., Ohmori, H., et al. (2000). Identification of additional genes belonging to the LexA regulon in Escherichia coli. Molecular Microbiology, 35, 1560–1572.

    Article  Google Scholar 

  • Fineran, P. C., Blower, T. R., Foulds, I. J., Humphreys, D. P., Lilley, K. S., & Salmond, G. P. (2009). The phage abortive infection system, ToxIN, functions as a protein-RNA toxin–antitoxin pair. Proceedings of the National Academy of Sciences of the U.S.A., 106, 894–899.

    Article  CAS  Google Scholar 

  • Francuski, D., & Saenger, W. (2009). Crystal structure of the antitoxin–toxin protein complex RelB-RelE from Methancaldococcus jannaschii. Journal of Molecular Biology, 393, 898–908.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pino, A., Balasubramanian, S., Wyns, L., Gazit, E., De Greve, H., Magnuson, R. D., et al. (2010). Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell, 142, 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Garza-Sanchez, F., Schaub, R. E., Janssen, B. D., & Hayes, C. S. (2011). tmRNA regulates synthesis of the ArfA ribosome rescue factor. Molecular Microbiology, 80, 1204–1219.

    Article  PubMed  CAS  Google Scholar 

  • Gerdes, K. (2000). Toxin–antitoxin modules may regulate synthesis of macromolecules during nutritional stress. Journal of Bacteriology, 182, 561–572.

    Article  PubMed  CAS  Google Scholar 

  • Gerdes, K., Bech, F. W., Jorgensen, S. T., Lobnerolesen, A., Rasmussen, P. B., Atlung, T., et al. (1986a). Mechanism of Postsegregational killing by the hok gene-product of the parb system of plasmid R1 and its homology with the Relf gene-product of the Escherichia-Coli Relb operon. EMBO Journal, 5, 2023–2029.

    PubMed  CAS  Google Scholar 

  • Gerdes, K., Larsen, J. E., & Molin, S. (1985). Stable inheritance of plasmid R1 requires two different loci. Journal of Bacteriology, 161, 292–298.

    PubMed  CAS  Google Scholar 

  • Gerdes, K., Rasmussen, P. B., & Molin, S. (1986b). Unique type of plasmid maintenance function—postsegregational killing of plasmid-free cells. Proceedings of the National Academy of Sciences of the U.S.A., 83, 3116–3120.

    Article  CAS  Google Scholar 

  • Gotfredsen, M., & Gerdes, K. (1998). The Escherichia coli relBE genes belong to a new toxin–antitoxin gene family. Molecular Microbiology, 29, 1065–1076.

    Article  PubMed  CAS  Google Scholar 

  • Grady, R., & Hayes, F. (2003). Axe-Txe, a broad-spectrum proteic toxin–antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Molecular Microbiology, 47, 1419–1432.

    Article  PubMed  CAS  Google Scholar 

  • Grønlund, H., & Gerdes, K. (1999). Toxin–antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes. Journal of Molecular Biology, 285, 1401–1415.

    Article  PubMed  Google Scholar 

  • Hazan, R., & Engelberg-Kulka, H. (2004). Escherichia coli mazEF-mediated cell death as a defence mechanism that inhibits the spread of phage P1. Molecular Genetics and Genomics, 272, 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Heaton, B. E., Herrou, J., Blackwell, A. E., Wysocki, V. H., & Crosson, S. (2012). Molecular structure and function of the novel BrnT/BrnA toxin–antitoxin system of brucella abortus. Journal of Biological Chemistry, 287, 12098–12110.

    Article  PubMed  CAS  Google Scholar 

  • Hiraga, S., Jaffe, A., Ogura, T., Mori, H., & Takahashi, H. (1986). F-Plasmid Ccd mechanism in Escherichia-Coli. Journal of Bacteriology, 166, 100–104.

    PubMed  CAS  Google Scholar 

  • Ivanova, N., Pavlov, M. Y., & Ehrenberg, M. (2005). tmRNA-induced release of messenger RNA from stalled ribosomes. Journal of Molecular Biology, 350, 897–905.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, R. B., Grohmann, E., Schwab, H., Diazorejas, R., & Gerdes, K. (1995). Comparison of Ccd of F, Parde of Rp4, and Pard of R1 using a novel conditional replication control-system of plasmid R1. Molecular Microbiology, 17, 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y., Pogliano, J., Helinski, D. R., & Konieczny, I. (2002). ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Molecular Microbiology, 44, 971–979.

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen, M. G., Pandey, D. P., Jaskolska, M., & Gerdes, K. (2009). HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. Journal of Bacteriology, 191, 1191–1199.

    Article  PubMed  Google Scholar 

  • Kamada, K., & Hanaoka, F. (2005). Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Molecular Cell, 19, 497–509.

    Article  PubMed  CAS  Google Scholar 

  • Kamada, K., Hanaoka, F., & Burley, S. K. (2003). Crystal structure of the MazE/MazF complex: Molecular bases of antidote-toxin recognition. Molecular Cell, 11, 875–884.

    Article  PubMed  CAS  Google Scholar 

  • Keiler, K. C. (2008). Biology of trans-translation. Annual Review of Microbiology, 62, 133–151.

    Article  PubMed  CAS  Google Scholar 

  • Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of Bacteriology, 186, 8172–8180.

    Article  PubMed  CAS  Google Scholar 

  • Khoo, S. K., Loll, B., Chan, W. T., Shoeman, R. L., Ngoo, L., Yeo, C. C., et al. (2007). Molecular and structural characterization of the PezAT chromosomal toxin–antitoxin system of the human pathogen Streptococcus pneumoniae. Journal of Biological Chemistry, 282, 19606–19618.

    Article  PubMed  CAS  Google Scholar 

  • Kiino, D. R., Phillips, G. J., & Silhavy, T. J. (1990). Increased expression of the bifunctional protein PrlF suppresses overproduction lethality associated with exported beta-galactosidase hybrid proteins in Escherichia coli. Journal of Bacteriology, 172, 185–192.

    PubMed  CAS  Google Scholar 

  • Kiino, D. R., & Silhavy, T. J. (1984). Mutation prlF1 relieves the lethality associated with export of beta-galactosidase hybrid proteins in Escherichia coli. Journal of Bacteriology, 158, 878–883.

    PubMed  CAS  Google Scholar 

  • Kristoffersen, P., Jensen, G. B., Gerdes, K., & Piskur, J. (2000). Bacterial toxin–antitoxin gene system as containment control in yeast cells. Applied and Environmental Microbiology, 66, 5524–5526.

    Article  PubMed  CAS  Google Scholar 

  • Lavalle, R. (1965). New mutants for regulation of RNA synthesis. Bull Soc Chim Biol (Paris), 47, 1567–1570.

    CAS  Google Scholar 

  • Lewis, K. (2010). Persister cells. Annual Review of Microbiology, 64, 357–372.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, L. K., Harlow, G. R., Gregg-Jolly, L. A., & Mount, D. W. (1994). Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. Journal of Molecular Biology, 241, 507–523.

    Article  PubMed  CAS  Google Scholar 

  • Li, G. Y., Zhang, Y., Inouye, M., & Ikura, M. (2008). Structural mechanism of transcriptional autorepression of the Escherichia coli RelB/RelE antitoxin/toxin module. Journal of Molecular Biology, 380, 107–119.

    Article  PubMed  CAS  Google Scholar 

  • Li, G. Y., Zhang, Y., Inouye, M., & Ikura, M. (2009). Inhibitory mechanism of Escherichia coli RelE-RelB toxin–antitoxin module involves a helix displacement near an mRNA interferase active site. Journal of Biological Chemistry, 284, 14628–14636.

    Article  PubMed  CAS  Google Scholar 

  • Magnuson, R. D. (2007). Hypothetical functions of toxin–antitoxin systems. Journal of Bacteriology, 189, 6089–6092.

    Article  PubMed  CAS  Google Scholar 

  • Magnusson, L. U., Farewell, A., & Nyström, T. (2005). ppGpp a global regulator in Escherichia coli. Trends in Microbiology, 13, 236–242.

    Article  PubMed  CAS  Google Scholar 

  • Maisonneuve, E., Shakespeare, L. J., Jorgensen, M. G., & Gerdes, K. (2011). Bacterial persistence by RNA endonucleases. Proceedings of the National Academy of Sciences of the U S A, 108, 13206–13211.

    Article  CAS  Google Scholar 

  • Motiejunaite, R., Armalyte, J., Markuckas, A., & Suziedeliene, E. (2007). Escherichia coli dinJ-yafQ genes act as a toxin–antitoxin module. FEMS Microbiology Letters, 268, 112–119.

    Article  PubMed  CAS  Google Scholar 

  • Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.

    PubMed  CAS  Google Scholar 

  • Neubauer, C., Gao, Y. G., Andersen, K. R., Dunham, C. M., Kelley, A. C., Hentschel, J., et al. (2009). The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell, 139, 1084–1095.

    Article  PubMed  CAS  Google Scholar 

  • Odaert, B., Saida, F., Aliprandi, P., Durand, S., Crechet, J. B., Guerois, R., et al. (2007). Structural and functional studies of RegB, a new member of a family of sequence-specific ribonucleases involved in mRNA inactivation on the ribosome. Journal of Biological Chemistry, 282, 2019–2028.

    Article  PubMed  CAS  Google Scholar 

  • Ogura, T., & Hiraga, S. (1983). Mini-F plasmid genes that couple host-cell division to plasmid proliferation. Proceedings of the National Academy of Sciences of the U.S.A., 80, 4784–4788.

    Article  CAS  Google Scholar 

  • Overgaard, M., Borch, J., & Gerdes, K. (2009). RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. Journal of Molecular Biology, 394, 183–196.

    Article  PubMed  CAS  Google Scholar 

  • Overgaard, M., Borch, J., Jorgensen, M. G., & Gerdes, K. (2008). Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Molecular Microbiology, 69, 841–857.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, D. P., & Gerdes, K. (2005). Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research, 33, 966–976.

    Article  PubMed  CAS  Google Scholar 

  • Pecota, D. C., & Wood, T. K. (1996). Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. Journal of Bacteriology, 178, 2044–2050.

    PubMed  CAS  Google Scholar 

  • Pedersen, K., Christensen, S. K., & Gerdes, K. (2002). Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Molecular Microbiology, 45, 501–510.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, K., & Gerdes, K. (1999). Multiple hok genes on the chromosome of Escherichia coli. Molecular Microbiology, 32, 1090–1102.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, K., Zavialov, A. V., Pavlov, M. Y., Elf, J., Gerdes, K., & Ehrenberg, M. (2003). The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell, 112, 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Potrykus, K., & Cashel, M. (2008). (p)ppGpp still magical? Annual Review of Microbiology, 62, 35–51.

    Article  PubMed  CAS  Google Scholar 

  • Prysak, M. H., Mozdzierz, C. J., Cook, A. M., Zhu, L., Zhang, Y., Inouye, M., et al. (2009). Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage. Molecular Microbiology, 71, 1071–1087.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R. C., & Helinski, D. R. (1992). Definition of a minimal plasmid stabilization system from the broad-host-range plasmid Rk2. Journal of Bacteriology, 174, 8119–8132.

    PubMed  CAS  Google Scholar 

  • Schmidt, O., Schuenemann, V. J., Hand, N. J., Silhavy, T. J., Martin, J., Lupas, A. N., et al. (2007). prIF and yhaV encode a new toxin–antitoxin system in Escherichia coli. Journal of Molecular Biology, 372, 894–905.

    Article  PubMed  CAS  Google Scholar 

  • Sevin, E. W., & Barloy-Hubler, F. (2007). RASTA-Bacteria: A web-based tool for identifying toxin–antitoxin loci in prokaryotes. Genome Biology, 8, R155.

    Article  PubMed  Google Scholar 

  • Shah, D., Zhang, Z. G., Khodursky, A., Kaldalu, N., Kurg, K., & Lewis, K. (2006). Persisters: A distinct physiological state of E-coli. Bmc Microbiology, 6, 53.

    Article  PubMed  Google Scholar 

  • Shi, Y. L., Bao, L., Shang, Z. L., & Yao, S. X. (2008). RelE toxin protein of mycobacterium tuberculosis induces growth inhibition of lung cancer A-549 cell. Sichuan Da Xue Xue Bao Yi Xue Ban, 39, 368–372.

    PubMed  CAS  Google Scholar 

  • Singletary, L. A., Gibson, J. L., Tanner, E. J., McKenzie, G. J., Lee, P. L., Gonzalez, C., et al. (2009). An SOS-regulated type 2 toxin–antitoxin system. Journal of Bacteriology, 191, 7456–7465.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, W. B., & Silhavy, T. J. (1992). Enhanced export of beta-galactosidase fusion proteins in prlF mutants is Lon dependent. Journal of Bacteriology, 174, 5661–5668.

    PubMed  CAS  Google Scholar 

  • Sørensen, M. A. (2001). Charging levels of four tRNA species in Escherichia coli Rel(+) and Rel(-) strains during amino acid starvation: A simple model for the effect of ppGpp on translational accuracy. Journal of Molecular Biology, 307, 785–798.

    Article  PubMed  Google Scholar 

  • Szekeres, S., Dauti, M., Wilde, C., Mazel, D., & Rowe-Magnus, D. A. (2007). Chromosomal toxin––antitoxin loci can diminish large-scale genome reductions in the absence of selection. Molecular Microbiology, 63, 1588–1605.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, H., Kakuta, Y., Okada, T., Yao, M., Tanaka, I., & Kimura, M. (2005). Crystal structure of archaeal toxin–antitoxin RelE-RelB complex with implications for toxin activity and antitoxin effects. Nature Structural and Molecular Biology, 12, 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Temperley, R., Richter, R., Dennerlein, S., Lightowlers, R. N., & Chrzanowska-Lightowlers, Z. M. (2010). Hungry codons promote frameshifting in human mitochondrial ribosomes. Science, 327, 301.

    Article  PubMed  CAS  Google Scholar 

  • Tian, Q. B., Hayashi, T., Murata, T., & Terawaki, Y. (1996). Gene product identification and promoter analysis of hig locus of plasmid Rts1. Biochemical and Biophysical Research Communications, 225, 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Van Dyk, T. K., DeRose, E. J., & Gonye, G. E. (2001). LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains. Journal of Bacteriology, 183, 5496–5505.

    Article  PubMed  Google Scholar 

  • Van Melderen, L. (2010). Toxin–antitoxin systems: Why so many, what for? Current Opinion in Microbiology, 13, 781–785.

    Article  PubMed  Google Scholar 

  • Wagner, J., Gruz, P., Kim, S. R., Yamada, M., Matsui, K., Fuchs, R. P., et al. (1999). The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Molecular Cell, 4, 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Kim, Y., Hong, S. H., Ma, Q., Brown, B. L., Pu, M., et al. (2011). Antitoxin MqsA helps mediate the bacterial general stress response. Nature Chemical Biology, 7, 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Winther, K. S., & Gerdes, K. (2009). Ectopic production of VapCs from Enterobacteria inhibits translation and trans-activates YoeB mRNA interferase. Molecular Microbiology, 72, 918–930.

    Article  PubMed  CAS  Google Scholar 

  • Winther, K. S., & Gerdes, K. (2012). Regulation of Enteric vapBC Transcription: Induction by VapC Toxin Dimer-Breaking. Nucleic Acids Research, 40, 4347–4357.

    Article  PubMed  CAS  Google Scholar 

  • Wozniak, R. A., & Waldor, M. K. (2009). A toxin–antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genetics, 5, e1000439.

    Article  PubMed  Google Scholar 

  • Yamamoto, T. A. M., Gerdes, K., & Tunnacliffe, A. (2002). Bacterial toxin RelE induces apoptosis in human cells. FEBS Letters, 519, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Yang, M., Gao, C., Wang, Y., Zhang, H., & He, Z. G. (2010). Characterization of the interaction and cross-regulation of three mycobacterium tuberculosis RelBE modules. PLoS ONE, 5, e10672.

    Article  PubMed  Google Scholar 

  • Yuan, J., Yamaichi, Y., & Waldor, M. K. (2011). The three vibrio cholerae chromosome II-encoded ParE toxins degrade chromosome I following loss of chromosome II. Journal of Bacteriology, 193, 611–619.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., & Inouye, M. (2009). The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin. Journal of Biological Chemistry, 284, 6627–6638.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y. L., Zhang, J. J., Hoeflich, K. P., Ikura, M., Qing, G. L., & Inouye, M. (2003). MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Molecular Cell, 12, 913–923.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wellcome Trust. I thank members of the Gerdes group and of the Centre for Bacterial Cell Biology for friendly and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenn Gerdes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerdes, K. (2013). Type II Toxin-Antitoxins Loci: The relBE Family. In: Gerdes, K. (eds) Prokaryotic Toxin-Antitoxins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33253-1_5

Download citation

Publish with us

Policies and ethics