Skip to main content

Toward a Molecular Ion Qubit

  • Conference paper
  • First Online:

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

We discuss the application of a novel spectroscopy protocol to study the Zeeman structure of single molecular ions. From molecular structure calculations for \({}^{14}\mathrm{{N}}_{2}^{+}\) and \({}^{16}\mathrm{{O}}_{2}^{+}\) we deduce their Zeeman spectra and discuss their potential to be used as a resource to encode quantum information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bressel, U, Borodin, A., Shen, J., Hansen, M., Ernsting, I., Schiller, S.: Addressing and manipulation of individual hyperfine states in cold trapped molecular ions and application to HD +  frequency metrology. E-print arXiv:1203.2153 (2012)

    Google Scholar 

  2. Brown, J.M., Carrington, A.: Rotational Spectroscopy of Diatomic Molecules. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  3. Brown, J.M., Kaise, M., Kerr, C.M.L., Milton, D.J.: A determination of fundamental Zeeman parameters for the OH radical. Mol. Phys. 36, 553 (1978)

    Article  ADS  Google Scholar 

  4. Coxon, J.A., Haley, M.P.: Rotational analysis of the \({A}^{2}{\Pi }_{u} \rightarrow {X}^{2}{\Pi }_{g}\) second negative band system of 16O2  + . J. Mol. Spectrosc. 108, 119 (1984)

    Article  ADS  Google Scholar 

  5. García-Ripoll, J.J., Zoller, P., Cirac, J.I.: Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003)

    Article  ADS  Google Scholar 

  6. García-Ripoll, J.J., Zoller, P., Cirac, J.I.: Coherent control of trapped ions using off-resonant lasers. Phys. Rev. A 71, 062309 (2005)

    Article  ADS  Google Scholar 

  7. Haeffner, H., Roos, C.F., Blatt, R.: Quantum computing with trapped ions. Phys. Rep. 469, 155 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. Hume, D.B., Rosenband, T., Wineland, D.J.: High-fidelity adaptive qubit detection through repetitive quantum nondemolition measurements. Phys. Rev. Lett. 99, 120502 (2007)

    Article  ADS  Google Scholar 

  9. Johanning, M., Braun, A., Timoney, N., Elman, V., Neuhauser, W., and Wunderlich, Chr.: Individual addressing of trapped ions and coupling of motional and spin states using rf radiation. Phys. Rev. Lett. 102, 073004 (2009)

    Google Scholar 

  10. Krems, R.V., Egorov, D., Helton, J.S., Maussang, K., Nguyen, S.V., Doyle, J.M.: Zeeman effect in CaF(2 Π 3 ∕ 2) J. Chem. Phys. 121, 11639 (2004)

    ADS  Google Scholar 

  11. Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W. M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412 (2003)

    Article  ADS  Google Scholar 

  12. Leo Meerts, W., Veseth, L., Leibfried, D., Blatt, R., Monroe, C., and Wineland, D.: The zeeman spectrum of the NO molecule. J. Molec. Spectros. 82, 202 (1980)

    Article  Google Scholar 

  13. Mintert, F., Wunderlich, C.: Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87, 257904 (2001)

    Article  ADS  Google Scholar 

  14. Molhave, K., Drewsen, M.: Formation of translationally cold MgH +  and MgD +  molecules in an ion trap. Phys. Rev. A 62, 011401 (2000)

    Article  ADS  Google Scholar 

  15. Mur-Petit, J., García-Ripoll, J.J., Pérez-Ríos, J., Campos-Martínez, J., Hernández, M.I., Willitsch, S.: Temperature-independent quantum logic for molecular spectroscopy. Phys. Rev. A 85, 022308 (2012)

    Article  ADS  Google Scholar 

  16. Mur-Petit, J., García-Ripoll, J.J., Pérez-Ríos, J., Campos-Martínez, J., Hernández, M.I., Willitsch, S.: Prospects for simple diatomic ions as Zeeman qubits. To be submitted

    Google Scholar 

  17. Nielsen, M., Chuang, I.: Quantum Information and Computation. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  18. Ospelkaus, S., Ni, K.K., Wang, D., de Miranda, M.H.G., Neyenhuis, B., Quéméner, G., Julienne, P.S., Bohn, J.L., Jin, D.S., Ye, J.: Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853 (2010)

    Article  ADS  Google Scholar 

  19. Schiller, S., Korobov, V.: Tests of time independence of the electron and nuclear masses with ultracold molecules. Phys. Rev. A 71, 032505 (2005)

    Article  ADS  Google Scholar 

  20. Schmidt, P.O., Rosenband, T., Langer, C., Itano, W.M., Bergquist, J.C., Wineland, D.J.: Spectroscopy using quantum logic. Science 309, 749 (2005)

    Article  ADS  Google Scholar 

  21. Schneider, T., Roth, B., Duncker, H., Ernsting, I., Schiller, S.: All-optical preparation of molecular ions in the rovibrational ground state. Nat. Phys. 6, 275 (2010)

    Article  Google Scholar 

  22. Shannon, C.M..: A symbolic analysis of relay and switching circuits Trans. Am. Inst. Elec. Eng. 52, 713–723 (1938)

    Article  Google Scholar 

  23. Staanum, P.F., Hojbjerre, K., Hansen, A.K., Drewsen, M.: Rotational laser cooling of vibrationally and translationally cold molecular ions. Nat. Phys. 6, 271 (2010)

    Article  Google Scholar 

  24. Tong, X., Wild, D., Willitsch, S.: Collisional and radiative effects in the state-selective preparation of translationally cold molecular ions in ion traps. Phys. Rev. A 83, 023415 (2011)

    Article  ADS  Google Scholar 

  25. Tong, X., Winney, A.H., Willitsch, S.: Sympathetic cooling of molecular ions in selected rotational and vibrational states produced by threshold photoionization. Phys. Rev. Lett. 105, 143001 (2010)

    Article  ADS  Google Scholar 

  26. Willitsch, S.: Coulomb-crystallized molecular ions in traps: methods, applications, prospects. Int. Rev. Phys. Chem. 31, 175–199 (2012)

    Article  Google Scholar 

  27. Willitsch, S., Bell, M.T., Gingell, A.D., Softley, T.P.: Chemical applications of laser- and sympathetically-cooled ions in ion traps. Phys. Chem. Chem. Phys. 10, 7200 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Spanish MICINN Projects FIS2009-10061, FIS2010-22064-C02-02 and CTQ2007-62898-BQU, CAM research consortium QUITEMAD S2009-ESP-1594, the Swiss National Science Foundation through the National Centre of Competence in Research “Quantum Science and Technology,” ESF COST Action IOTA (MP1001), a FP7 Marie Curie fellowship (IEF-2009-251913 MOLOPTLAT) (J. M-P.), and a JAE CSIC Fellowship (J. P.-R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mur-Petit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mur-Petit, J., Pérez-Ríos, J., Campos-Martínez, J., Hernández, M.I., Willitsch, S., García-Ripoll, J.J. (2013). Toward a Molecular Ion Qubit. In: Lorente, N., Joachim, C. (eds) Architecture and Design of Molecule Logic Gates and Atom Circuits. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33137-4_20

Download citation

Publish with us

Policies and ethics