Skip to main content

Breeding for Resistance to Viral Diseases

  • Chapter
  • First Online:
  • 1768 Accesses

Abstract

Genetic resistance to viruses and/or their vectors is the most practical and efficient method of disease control. Therefore, significant research effort has been devoted to this field. In fact, great achievements in breeding plants for virus resistance have been made using classical and molecular breeding approaches. The biggest obstacle for these breeding programs is to identify and incorporate, on a large scale, multiple resistance factors in elite genetic materials and anticipate potential problems with emerging viral diseases in association with the challenges that climate change is bringing to food production. The development of dense genetic maps, with molecular markers in strong linkage disequilibrium with virus resistance alleles, has enabled the establishment of marker-assisted selection of superior genotypes and the isolation and cloning of many virus resistance genes. Such studies have been facilitated in some of the species for which complete genome sequences are now available. Moreover, the knowledge about viral genes and genomes has been used in the development of resistant transgenic plants and they have been effective in different pathosystems; paving the way towards a new collection of anti-viral biotech breeding strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anagnostou K, Jahn MM, Perl-Treves R (2000) Inheritance and linkage analysis of resistance to zucchini yellow mosaic virus, watermelon mosaic virus, papaya ringspot virus and powdery mildew resistance in melon. Euphytica 116:265–270

    Article  CAS  Google Scholar 

  • Aragão FJL, Faria JC (2009) First transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27:1086–1088

    Article  PubMed  Google Scholar 

  • Boiteux LS (1995) Allelic relationships between genes for resistance to Tomato spotted wilt virus in Capsicum chinense. Theor Appl Genet 90:146–149

    Article  Google Scholar 

  • Boiteux LS, de Ávila AC (1994) Inheritance of a resistance specific to Tomato spotted wilt tospovirus in Capsicum chinense ‘PI 159236’. Euphytica 75:139–142

    Article  Google Scholar 

  • Boiteux LS, Giordano LB (1993) Genetic basis of resistance against two Tospovirus species in tomato (Lycopersicon esculentum). Euphytica 71:151–154

    Article  Google Scholar 

  • Boiteux LS, Nagata T, Dutra WP, Fonseca MEN (1993) Sources of resistance to Tomato spotted wilt virus (TSWV) in cultivated and wild species of Capsicum. Euphytica 67:89–94

    Article  Google Scholar 

  • Boiteux LS, Cupertino FP, Silva C, Dusi AN, Monte DC, van der Vlugt RAA, Fonseca MEN (1996) Resistance to potato virus Y (pathotype 1–2) in Capsicum annuum and Capsicum chinense is controlled by two independent major genes. Euphytica 87:53–58

    Article  Google Scholar 

  • Boiteux LS, Oliveira VR, Silva CH, Makishima N, Inoue-Nagata AK, Fonseca MEN, Giordano LB (2007a) Reaction of tomato hybrids carrying the Ty-1 locus to Brazilian bipartite Begomovirus species. Horticultura Brasileira 25:20–23

    Article  Google Scholar 

  • Boiteux LS, Pereira-Carvalho RC, Inoue-Nagata AK, Fonseca MEN, Resende RO, Fernández-Muñoz R (2007b) Reação de acessos de tomateiro portando o gene Ty-2 (introgredido de Solanum habrochaites f. glabratum) a um isolado de begomovírus de genoma bipartido. Horticultura Brasileira 25:S97

    Google Scholar 

  • Brommonschenkel SH, Frary A, Frary A, Tanksley SD (2000) The broad-spectrum Tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Interact 13:1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Cho JJ, Custer DM, Brommonschenkel SH, Tanksley SD (1995) Conventional breeding: Host-plant resistance and the use of molecular markers to develop resistance to Tomato spotted wilt virus in vegetables. Acta Horticulturae (ISHS) 431:367–378

    Google Scholar 

  • Cooper JI, Jones AT (1983) Responses of plant to viruses: proposals for the use of terms. Phytopathology 73:127–188

    Article  Google Scholar 

  • De Castro AP, Blanca JM, Díez MJ, Vinãls FN (2007) Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. Eur J Plant Pathol 117:347–356

    Article  Google Scholar 

  • Dianese EC, Fonseca MEN, Goldbach R, Kormelink R, Inoue-Nagata AK, Resende RO, Boiteux LS (2010) Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Mol Breed 25:133–142

    Article  CAS  Google Scholar 

  • Dianese EC, Fonseca MEN, Inoue-Nagata AK, Resende RO, Boiteux LS (2011) Search in Solanum (section Lycopersicon) germplasm for new sources of broad-spectrum resistance to four Tospovirus species. Euphytica 180:307–319

    Article  Google Scholar 

  • Díaz JA, Mallor C, Soria C, Camero R, Garzo E, Fereres A, Alvarez JM, Gómez-Guillamón ML, Luis-Arteaga M, Moriones E (2003) Potential sources of resistance for melon to nonpersistently aphid-borne viruses. Plant Dis 87:960–964

    Article  Google Scholar 

  • Díaz-Pendón JA, Fernández-Muñoz R, Gómes-Guillamón ML, Moriones E (2005) Inheritance of resistance to watermelon mosaic virus in Cucumis melo that impairs virus accumulation, symptom expression, and aphid transmission. Phytopathology 95:840–846

    Article  PubMed  Google Scholar 

  • Fargette D, Konaté G, Fauquet C, Muller E, Peterschmitt M, Thresh JM (2006) Molecular ecology and emergence of tropical plant viruses. Annu Rev Phytopathol 44:235–260

    Article  PubMed  CAS  Google Scholar 

  • Fraser RSS (1992) The genetics of resistance to plant viruses. Annu Rev Phytopathol 28:197–200

    Google Scholar 

  • García-Cano E, Resende RO, Boiteux LS, Giordano LB, Fernández-Muñoz R, Moriones E (2008) Phenotypic expression, stability and inheritance of a recessive resistance to monopartite begomoviruses associated with tomato yellow leaf curl disease in tomato. Phytopathology 98:618–627

    Article  PubMed  Google Scholar 

  • Giordano LB, Ávila AC, Charchar JM, Boiteux LS, Ferraz E (2000) Viradoro: a tospovirus-resistant processing tomato cultivar adapted to tropical environments. HortScience 35:1368–1370

    Google Scholar 

  • Giordano LB, Fonseca MEN, Silva JBC, Inoue-Nagata AK, Boiteux LS (2005a) Efeito da infecção precoce de Begomovírus com genoma bipartido em características de fruto de tomate industrial. Horticultura Brasileira 23:815–818

    Article  Google Scholar 

  • Giordano LB, Silva-Lobo VL, Santana FM, Fonseca MEN, Boiteux LS (2005b) Inheritance of resistance to the bipartite Tomato chlorotic mottle begomovirus derived from Lycopersicon esculentum cv. ‘Tyking’. Euphytica 143:27–33

    Article  Google Scholar 

  • Giordano LB, Boiteux LS, Quezado-Duval AM, Fonseca MEN, Resende FV, Reis A, González M, Nascimento WM, Mendonça JL (2010) BRS Tospodoro: a high lycopene processing tomato cultivar adapted to organic crop systems and with multiple resistance to pathogens. Horticultura Brasileira 28:241–245

    Article  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  PubMed  CAS  Google Scholar 

  • Gómez P, Rodríguez-Hernández AM, Moury B, Aranda MA (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur J Plant Pathol 125:1–22

    Article  Google Scholar 

  • Guimarães AM, Pavan MA, Silva N (2009) Comportamento de progênies F5 de alface às tospoviroses em condições de campo. Unimar Ciências 18:37–40

    Google Scholar 

  • Gray S, DeBoer S, Lorenzen J, Karasev AV, Whitworth J, Nolte P, Singh R, Boucher A, Xu H (2010) Potato virus Y: an evolving concern for potato crops in the United States and Canada. Plant Dis 94:1384–1397

    Article  Google Scholar 

  • Guner N, Wehner TC (2008) Overview of Potyvirus resistance in watermelon In: Pitrat M (ed) Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. INRA, Avignon (France), pp 445–452

    Google Scholar 

  • Inoue-Nagata AK, Fonseca MEN, Resende RO, Boiteux LS, Monte DC, Dusi AN, de Ávila AC, van der Vlugt RAA (2002) Pepper yellow mosaic virus: A new potyvirus in sweet pepper, Capsicum annuum. Arch Virol 147:849–855

    Article  PubMed  CAS  Google Scholar 

  • Jahn M, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, Grube RC, Aftergoot E, Lapidot M, Moyer J (2000) Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol Plant Microbe Interact 13:673–682

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Schuster DJ, Scott JW (2007) Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284

    Google Scholar 

  • Jacobsen E, Schouten H (2007) Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotechnol 25:219–223

    Article  PubMed  CAS  Google Scholar 

  • Kang WH, Hoang NH, Yang HB, Kwon JK, Jo SH, Seo JK, Kim KH, Choi D, Kang BC (2010) Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor Appl Genet 120:1587–1596

    Article  PubMed  CAS  Google Scholar 

  • Kelley KB, Whitworth JL, Novy RG (2009) Mapping of the potato leafroll virus resistance gene, Rlr etb , from Solanum etuberosum identifies interchromosomal translocations among its E-genome chromosomes 4 and 9 relative to the A-genome of Solanum L. sect. Petota. Mol Breed 23:489–500

    Article  CAS  Google Scholar 

  • Lanfermeijer FC, Warmink J, Hille J (2005) The products of the broken Tm-2 and the durable Tm-2 2 resistance genes from tomato differ in four amino acids. J Exp Bot 56:2925–2933

    Article  PubMed  CAS  Google Scholar 

  • Lebeda A, Dolezalova I, Kristkova E, Kitner M, Petrzelova I, Mieslerova B, Novotna A (2009) Wild Lactuca germplasm for breeding: current status, gaps, and challenges. Euphytica 170:15–34

    Article  Google Scholar 

  • LeGall O, Aranda MA, Caranta C (2011) Plant resistance to viruses mediated by translation initiation factors. In: Caranta C (ed) Recent advances in plant virology. Horizon Scientific Press, Norfolk, UK, pp 177–194

    Google Scholar 

  • Maule AJ, Caranta C, Boulton MI (2007) Sources of natural resistance to plant viruses: status and prospects. Mol Plant Pathol 8:223–231

    Article  PubMed  CAS  Google Scholar 

  • Meyer JDF, Deleu W, Garcia-Mas J, Havey MJ (2008) Construction of a fosmid library of cucumber (Cucumis sativus) and comparative analyses of the eIF4E and eIF(iso)4E regions from cucumber and melon (Cucumis melo). Mol Genet Genomics 279:473–480

    Article  PubMed  CAS  Google Scholar 

  • Nagai H (1989) PI 342517, uma introdução de alface com resistência ao vírus de vira cabeça. Horticultura Brasileira 7:66

    Google Scholar 

  • Nagai H (1993) Tomate. In: Furlani AMC, Viégas GP (eds) O Melhoramento Genético de Plantas no Instituto Agronômico. IAC, Campinas-SP, pp 301–313

    Google Scholar 

  • O’Malley PJ, Hartmann RW (1989) Resistance to tomato spotted wilt virus in lettuce. HortScience 24:360–362

    Google Scholar 

  • Park YH, Sensoy S, Wye C, Antonise R, Peleman J, Havey MJ (2000) A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome 43:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Palukaitis P, García-Arenal F (2003) Cucumber mosaic virus. No. 400 in: descriptions of plant viruses. Association of Applied Biologists, Warwick, UK

    Google Scholar 

  • Pavan MA, Krause-Sakate R, Silva N, Zerbini FM, LeGall O (2008) Virus diseases of lettuce in Brazil. Plant Viruses 2:35–41

    Google Scholar 

  • Pereira-Carvalho RC, Boiteux LS, Fonseca MEN, Díaz-Pendon JA, Moriones E, Fernández-Muñoz R, Charchar JM, Resende RO (2010) Multiple resistance to Meloidogyne spp. and to bipartite and monopartite Begomovirus spp. in wild Solanum (Lycopersicon) accessions. Plant Dis 94:179–185

    Article  Google Scholar 

  • Picoli EAT, Lima GSA, Lau D, Oliveira JCF, Laia ML, Zerbini FM, Brommonschenkel SH, Fári MG, Otoni WC (2006) Resistance gene Sw-5 of tomato confers resistance to TCSV in Solanum melongena. Int J Hortic Sci 12:41–47

    Google Scholar 

  • Ribeiro SG, Ambrozevícius LP, Ávila AC, Bezerra IC, Calegario RF, Fernandes JJ, Lima MF, Mello RN, Rocha H, Zerbini FM (2003) Distribution and genetic diversity of tomato-infecting begomoviruses in Brazil. Arch Virol 148:281–295

    Article  PubMed  CAS  Google Scholar 

  • Solomon-Blackburn RM, Barker H (2001) Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches. Heredity 86:17–35

    Article  PubMed  CAS  Google Scholar 

  • Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954.

    Article  PubMed  CAS  Google Scholar 

  • Taliansky M, Mayo MA, Barker H (2003) Potato leafroll virus: a classic pathogen shows some new tricks. Mol Plant Pathol 4:81–89

    Article  PubMed  CAS  Google Scholar 

  • Tomita R, Sekine KT, Mizumoto H, Sakamoto M, Murai J, Kiba A, Hikichi Y, Suzuki K, Kobayashi K (2011) Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Mol Plant Microbe Interact 24:108–117

    Article  PubMed  CAS  Google Scholar 

  • Vieira JV, Ávila AC, Silva GO (2010) Avaliação de genótipos de melancia para resistência ao Papaya ringspot vírus, estirpe melancia. Horticultura Brasileira 28:7–11

    Article  Google Scholar 

  • Wang D, Bosland PW (2006) The genes of Capsicum. HortScience 41:1169–1187

    CAS  Google Scholar 

  • Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, Van-Oss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88:141–146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo S. Boiteux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boiteux, L.S., de Noronha Fonseca, M.E., Vieira, J.V., de Cássia Pereira-Carvalho, R. (2012). Breeding for Resistance to Viral Diseases. In: Fritsche-Neto, R., Borém, A. (eds) Plant Breeding for Biotic Stress Resistance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33087-2_4

Download citation

Publish with us

Policies and ethics