Skip to main content

Challenges for Plant Breeding to Develop Biotic-Resistant Cultivars

  • Chapter
  • First Online:
Plant Breeding for Biotic Stress Resistance

Abstract

The fast world population growth and the increase in the per capita income, especially in the emerging nations referred to as BRIC countries (Brazil, Russia, India, China, and South Africa) has created huge pressure for the expansion of the agricultural growing area and the crop yields to meet the rising demand. Additionally, climate change has brought new challenges to agriculture to produce food, feed, fiber, and biofuels. To cope with these new challenges, plant breeding programs have to adopt new strategies to develop cultivars adapted to the new scenario. Experience shows that biotic stresses occur with different intensity in all agricultural areas around the world. The occurrence of insects, weeds, and diseases caused by fungus, bacterium, or virus may not be relevant in a specific year but they usually cause yields reduction in most of the years. The global warming has also shifted the paradigm of biotic stresses in most agricultural areas, especially in the tropical countries, bringing intense discussion on the scientific forums. This book has a collection of the most recent advances and discoveries applied to breeding for abiotic stresses, addressing epidemiological concepts, genetic resources, breeding methods, and molecular approaches geared to the development of resistant cultivars to biotic stresses. Written in an easy to understand style, and describing the breeding for biotic resistance step-by-step the reader will find this book as an excellent source of reference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandratos N (2006) World agriculture: towards 2030/50, interim report. An FAO perspective. FAO, Rome

    Google Scholar 

  • Assad ED, Pelegrino GO (2007) O clima e a potência ambiental. Agroanalysis 27(9):E3–E5

    Google Scholar 

  • Barrett CB (2002) Food security and food assistance programs. In: Gardner B, Rausser G (eds) Handbook of agricultural economics. Elsevier Science, Amsterdam

    Google Scholar 

  • Beddington I (2010) Food security: contributions from science to a new and greener revolution. Phil Trans R Soc 365:61–71

    Article  Google Scholar 

  • Borém A, Almeida GD (2011) Plantas geneticamente modificadas: desafios e oportunidades para regiões tropicais. Suprema, Visconde de Rio Branco, p 390p

    Google Scholar 

  • Borém A, Rios SA (2011) Milho biofortificado. Suprema, Visconde de Rio Branco, p 211p

    Google Scholar 

  • Boyer EL (1987) College: The Undergraduate Experience in America. New York: Harper & Row

    Google Scholar 

  • Bruinsma J (2003) World agriculture: towards 2015/2030. Summary report. FAO, Rome

    Google Scholar 

  • Buntgen U et al (2011) 2500 years of European climate variability and human susceptibility. Sci Express 331:578–582. 13 Jan 2011, p 1–4

    Google Scholar 

  • Clay J (2011) Freeze the footprint of food. Nature 475(7356): 287–289 (online)

    Google Scholar 

  • Costa CP (1974) Cenoura Nacional, em germoplasma para as condições de dias curtos nas regiões tropicais e sub-tropicais. Relatório científico do Departamento de Genética. ESALQ/USP. No 8, p 50–53

    Google Scholar 

  • Demeke M, Pangrazio G, Maetz M (2008) Country responses to the food security crisis: nature and preliminary implications of the policies pursued. FAO, Rome

    Google Scholar 

  • Denardi F, Camilo AP (1998) Estratégia do Melhoramento Genético da Macieira na EPAGRI Santa Catarina SA. Anais do II Simpósio sobre atualizações em Genética e Melhoramento de Plantas. UFLA, 1998, p 123–132

    Google Scholar 

  • Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperature maize in the North-Central United States. Crop Sci 39:1622–1630

    Google Scholar 

  • Duvick DN, Smith JSC, Cooper M (2004) Long term selection in a commercial hybrid maize breeding program. In: Janick I (ed) Plant breeding reviews. Part. 2. vol 24, pp 109–152

    Google Scholar 

  • Evans L (1998) Feeding the ten billion: plants and population growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Evans LT, Fisher RA (1999) Yield potential: its definition measurement and significance. Crop Sci 39:1544–1551

    Article  Google Scholar 

  • FAO (2001) State of food insecurity 2001. FAO, Rome

    Google Scholar 

  • FAO (2002) World agriculture: towards 2015/2030. FAO, Rome

    Google Scholar 

  • FAO (2009) How to Feed the World in 2050. FAO, Rome

    Google Scholar 

  • FAO (2010) The state of food insecurity in the world 2010. FAO, Rome

    Google Scholar 

  • FAO Global Perspective Studies Unit (2007) State of food and agriculture 2007. FAO, Roma

    Google Scholar 

  • Freire FCO, Ferraz S (1977) Nematóides associados ao feijoeiro, na Zona da Mata, Minas Gerais, e efeitos do parasitismo de Meloidogyne incognita e M. javanica sobre o cultivar “Rico 23”. Revista Ceres 24:141–149

    Google Scholar 

  • Fritsche-Neto R, Borém A (2011) Melhoramento de plantas para condições de estresses abióticos. Suprema, Visconde do Rio Branco, p 248

    Google Scholar 

  • Fuchs D, Kalfagianni J, Artenson M (2009) Retail power, private standards, and sustainability in the global food system. In: Clapp J, Fuchs D, (eds) Corporate power in global agrifood governance. MIT Press, Cambridge

    Google Scholar 

  • Green R, Cornell S, Scharlemann J, Balmford A (2005) The future of farming and conservation: response. Science 308:1257

    CAS  Google Scholar 

  • Haddad L, Frankenberger T (2003) Integrating relief and development to accelerate reductions in food insecurity in shock-prone areas. Occasional Paper No. 2. USAID/Office of Food for Peace, Washington

    Google Scholar 

  • Haddad L, Lindstrom J, Pinto Y (2010) The sorry state of M&E in agriculture: can people centered approaches help? IDS Bulletin 41.6. IDS, Brighton

    Google Scholar 

  • IPCC (2007) Climate change—the physical sciences basis: summary for policymakers. Intergovernmental Panel on Climate Change, Genebra 18

    Google Scholar 

  • Kumudini S, Godoy CV, Board JE, Omielan J, Tollenaar M (2008) Mechanisms involved in soybean rust-induced yield reduction. Crop Sci 48:2334–2342

    Article  Google Scholar 

  • Lobell D, Burke MB, Tebaldi C, Mastrawdrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate chance adaptation needs for food security in 2030. Science 319:607–610

    Article  PubMed  CAS  Google Scholar 

  • Lopes AS, Daher E, Bastos ARR, Guilherme LRG (2010) Suprimento e extensão das reservas de nutrientes no Brasil. In: Prochnow LI, Casarin V, Stipp SR (Orgs) Boas práticas para uso eficiente de fertilizantes. 1 edn. vol 2. IPNI, Piracicaba, p 283–307

    Google Scholar 

  • Miles MR, Frederick RD, Hartman GL (2003) Soybean rust: is the U.S. soybean crop at risk? Available at http://www.apsnet.org/online/feature/rust/.Acessadoem12/07/2011

  • NASSER LCB (1976) Efeito da ferrugem em diferentes estádios de desenvolvimento do feijão e dispersão de esporos de Uromyces phaseoli var. typica (Arth.). Viçosa: UFV, p 79

    Google Scholar 

  • Ort DR, Long SP (2003) Converting solar energy into crop production. In: Chrispeels MJ, Sadava DE (eds) Plants genes and crop biotechnology. 2nd edn. Jones and Bartlett Publishers International, Londres, p 240–269

    Google Scholar 

  • Paterniani E (1990) Breeding in the tropics critical. Rev Plant Sci 9(2):125–154

    Article  Google Scholar 

  • Peng S, Cassman KG, Virmani SS, Sheehy I, Khush GS (1999) Yield potential trends of tropical rice since the release of 1 R8 and the challenge of increasing rice yield potential. Crop Sci 39:1552–1559

    Article  Google Scholar 

  • Powles SB, Shaner DL (2001) Hebicide resistance and world grains. CRC-Press, Boca Raton 43p

    Book  Google Scholar 

  • Santos Filho HP, Ferraz S, Sediyama CS (1978) Influência da época de inoculação de Phaeoisariopsis griseola Sacc. sobre três cultivares de feijoeiro. Fitopatologia Brasileira 3:175–180

    Google Scholar 

  • Sim S, Barry M, Clift R, Cowell SJ (2007) The relative importance of transport in determining an appropriate sustainability strategy for food sourcing. Int J LCA 12:422–431

    Google Scholar 

  • Specht JE, Hume DJ, Kumudini SV (1999) Soybean yield potential. A genetic and physiological perspective. Crop Sci 39:1560–1570

    Article  Google Scholar 

  • Tollenaar M, Lee EA (2002) Yield potential, yield stability and stress tolerance in maize. Field Crops Res 75:161–169

    Article  Google Scholar 

  • UK Government (2011) Foresight project on global food and farming futures: trends in food demand and production. p 39

    Google Scholar 

  • United Nations (2009) The millennium development goals report. United Nations, New York

    Google Scholar 

  • USDA (2009) USDA agricultural projections to 2018. USDA, Washington

    Google Scholar 

  • Van Dam R, Seidell JC (2007) Carbohydrate intake and obesity. Eur J Clin Nutr 61:S75–S99

    Article  PubMed  Google Scholar 

  • Vencovsky R, Ramalho MAP (2006) Contribuições do melhoramento genético no Brasil. In: Paterniani E (Org) Ciência, agricultura e sociedade. 1 edn. EMBRAPA, Brasília, pp 41–74

    Google Scholar 

  • WHO/FAO (2003) Diet, nutrition and the prevention of chronic diseases. WHO, Geneva

    Google Scholar 

  • Vieira C (1983) Doenças e pragas do feijoeiro. UFV, Imp. univ., Viçosa, pp 85–96

    Google Scholar 

  • Vieira C (1964) Melhoramento do feijoeiro (Phaseolus vulgaris L.) no Estado de Minas Gerais. Experientiae 4:1–68

    Google Scholar 

  • Wright J (2010) Feeding nine billion in a low emissions economy—simple, though not easy. A Review for the Overseas Development Institute, London

    Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T, Verbeek B (1998) Differential allelopathic potential among wheat accessions to annual ryegrass. In: Michalk DL, Pratley JE (ed) 9th Australian Agronomy Conference, Charles Sturt University, Anais WaggaWagga, pp 567–571

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aluízio Borém .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borém, A., Fritsche-Neto, R. (2012). Challenges for Plant Breeding to Develop Biotic-Resistant Cultivars. In: Fritsche-Neto, R., Borém, A. (eds) Plant Breeding for Biotic Stress Resistance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33087-2_1

Download citation

Publish with us

Policies and ethics