Skip to main content

Twist Mappings with Non-Periodic Angles

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2065))

Abstract

Consider an annulus A with coordinates \((\theta,r)\), \(\theta + 2\pi \equiv \theta \), \(r \in [a,b]\). A map \((\theta,r)\mapsto ({\theta }_{1},{r}_{1})\) is twist if it satisfies \(\frac{\partial {\theta }_{1}} {\partial r} > 0\). Twist maps have been extensively studied and they are useful to understand the dynamics of autonomous or periodic Hamiltonian systems. In this course we study twist maps without assuming periodicity in θ. In other words, the annulus A is replaced by a strip \(S = \mathbb{R} \times [a,b]\). This new class of twist maps can be applied to the study of generalized standard maps or ping-pong models with a general non-autonomous time dependence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Notice that no smoothness in t has been assumed.

References

  1. S. Angenent, Monotone recurrence relations, their Birkhoff orbits and topological entropy. Ergodic Theor. Dyn. Syst. 10, 15–41 (1990)

    Google Scholar 

  2. V.I. Arnold, Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60 (Springer, Berlin, 1978)

    Google Scholar 

  3. V.I. Arnold, A. Avez, Ergodic Problems of Classical Mechanics (Benjamin, New York, 1968)

    Google Scholar 

  4. D. Arrowsmith, C. Place, An Introduction to Dynamical Systems (Cambridge University Press, London, 1990)

    Google Scholar 

  5. S. Aubry, The concept of anti-integrability: definition, theorems and applications to the standard map, in Twist Mappings and Their Applications. IMA Vol. Math. Appl. 44 (Springer, Berlin, 1992), pp. 7–54

    Google Scholar 

  6. M. Bialy, R. MacKay, Symplectic twist maps without conjugate points. Israel J. Math. 141, 235–247 (2004)

    Google Scholar 

  7. G. Birkhoff, Dynamical Systems (American Mathematical Society, Providence, 1927)

    Google Scholar 

  8. C. Carathéodory, Calculus of Variations (Chelsea Publ., New York, 1982)

    Google Scholar 

  9. D. Dolgopyat, Fermi acceleration, in Geometric and Probabilistic Structures in Dynamics, ed. by K. Burns, D. Dolgopyat, Y. Pesin (American Mathematical Society, Providence, 2008), pp. 149–166

    Google Scholar 

  10. J. Franks, Generalizations of the Poincaré-Birkhoff theorem. Ann. Math. 128, 139–151 (1988)

    Google Scholar 

  11. Ch. Golé, Symplectic Twist Maps (World Scientific, Singapore, 2001)

    Google Scholar 

  12. M. Herman, Dynamics connected with indefinite normal torsion, in Twist Mappings and Their Applications. IMA Vol. Math. Appl. 44 (Springer, Berlin, 1992), pp. 153–182

    Google Scholar 

  13. H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics (Birkhäuser, Boston, 2011)

    Google Scholar 

  14. M. Kunze, R. Ortega, Complete orbits for twist maps on the plane. Ergodic Theor. Dyn. Syst. 28, 1197–1213 (2008)

    Google Scholar 

  15. M. Kunze, R. Ortega, Complete orbits for twist maps on the plane: extensions and applications. J. Dyn. Differ. Equat. 23, 405–423 (2011)

    Google Scholar 

  16. M. Kunze, R. Ortega, Complete orbits for twist maps on the plane: the case of small twist. Ergodic Theor. Dyn. Syst. 31, 1471–1498 (2011)

    Google Scholar 

  17. S. Laederich, M. Levi, Invariant curves and time-dependent potentials. Ergodic Theor. Dyn. Syst. 11, 365–378 (1991)

    Google Scholar 

  18. A. Lazer, D. Leach, On a nonlinear two-point boundary value problem. J. Math. Anal. Appl. 26, 20–27 (1969)

    Google Scholar 

  19. P. Le Calvez, J. Wang, Some remarks on the Poincaré-Birkhoff theorem. Proc. Am. Math. Soc. 138, 703–715 (2010)

    Google Scholar 

  20. S. Lefschetz, Differential Equations: Geometric Theory (Dover, New York, 1977)

    Google Scholar 

  21. R. MacKay, S. Slijepčević, J. Stark, Optimal scheduling in a periodic environment. Nonlinearity 13, 257–297 (2000)

    Google Scholar 

  22. J. Mather, Existence of quasi-periodic orbits for twist homeomorphisms on the annulus. Topology 21, 457–467 (1982)

    Google Scholar 

  23. J. Mather, Variational construction of orbits of twist diffeomorphisms. J. Am. Math. Soc. 4, 207–263 (1991)

    Google Scholar 

  24. J. Mawhin, Global results for the forced pendulum equation, in Handbook of Differential Equations, vol. 1, chap. 6 (Elsevier, Amsterdam, 2004), pp. 533–589

    Google Scholar 

  25. D. McDuff, D. Salamon, Introduction to Symplectic Topology, 2nd edn. (Oxford University Press, London, 1998)

    Google Scholar 

  26. K.R. Meyer, G.R Hall, D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 2nd edn. (Springer, Berlin, 2009)

    Google Scholar 

  27. J. Moser, Stability and nonlinear character of ordinary differential equations, in Nonlinear Problems (Proc. Sympos., Madison, WI, 1962) (University of Wisconsin Press, Madison, 1963), pp. 139–150

    Google Scholar 

  28. J. Moser, in Selected Chapters in the Calculus of Variations. Lecture Notes by O. Knill, Lectures in Mathematics, ETH Zürich (Birkhäuser, Boston, 2003)

    Google Scholar 

  29. J. Moser, E. Zehnder, Notes on Dynamical Systems (American Mathematical Society, Prvidence, 2005)

    Google Scholar 

  30. R. Ortega, G. Verzini, A variational method for the existence of bounded solutions of a sublinear forced oscillator. Proc. Lond. Math. Soc. 88, 775–795 (2004)

    Google Scholar 

  31. M. Pei, Aubry-Mather sets for finite-twist maps of a cylinder and semilinear Duffing equations. J. Differ. Equat. 113, 106–127 (1994)

    Google Scholar 

  32. L. Pustyl’nikov, Poincaré models, rigorous justification of the second law of thermodynamics from mechanics, and the Fermi acceleration mechanism. Russ. Math. Surv. 50, 145–189 (1995)

    Google Scholar 

  33. A. Radmazé, Sur les solutions périodiques et les extremales fermées du calcul des variations. Math. Ann. 100, 63–96 (1934)

    Google Scholar 

  34. C. Siegel, J. Moser, Lectures on Celestial Mechanics (Springer, Berlin, 1971)

    Google Scholar 

  35. S. Terracini, G. Verzini, Oscillating solutions to second order ODEs with indefinite superlinear nonlinearities. Nonlinearity 13, 1501–1514 (2000)

    Google Scholar 

  36. J. You, Invariant tori and Lagrange stability of pendulum-type equations. J. Differ. Equat. 85, 54–65 (1990)

    Google Scholar 

  37. V. Zharnitsky, Instability in Fermi-Ulam ping-pong problem. Nonlinearity 11, 1481–1487 (1998)

    Google Scholar 

  38. V. Zharnitsky, Invariant curve theorem for quasiperiodic twist mappings and stability of motion in the Fermi Ulam problem. Nonlinearity 13, 1123–1136 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Ortega .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kunze, M., Ortega, R. (2013). Twist Mappings with Non-Periodic Angles. In: Stability and Bifurcation Theory for Non-Autonomous Differential Equations. Lecture Notes in Mathematics(), vol 2065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32906-7_5

Download citation

Publish with us

Policies and ethics