Skip to main content

Resonance Problems for Some Non-autonomous Ordinary Differential Equations

  • Chapter
  • First Online:
Stability and Bifurcation Theory for Non-Autonomous Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2065))

Abstract

Recent years have seen a lot of activity in the study of quasilinear non-autonomous ordinary differential equations or systems of the form (ϕ(y′)) = f(t, y, y′), where \(\phi : A \subset {\mathbb{R}}^{n} \rightarrow B \subset {\mathbb{R}}^{n}\) is some homeomorphism such that \(\phi (0) = 0\) between the open sets A and B. The situation generalizes the classical case where \(A = B = {\mathbb{R}}^{n}\) and \(\phi \) is the identity, and the well-studied case of the p-Laplacian (p > 1) where \(\phi (s) =\| {s\|}^{p-2}s\). Contemporary researches concern less standard situations where \(\phi : B(a) \rightarrow {\mathbb{R}}^{n}\) (singular homeomorphism) and \(\phi : {\mathbb{R}}^{n} \rightarrow B(a)\) (bounded homeomorphism), where B(a) is the open ball of centre 0 and radius a. For n = 1, a model for the first case, namely \(\phi (s) = \frac{s} {\sqrt{1-{s}^{2}}}\), corresponds to acceleration in special relativity, and a model for the second situation, namely \(\phi (s) = \frac{s} {\sqrt{1+{s}^{2}}}\), corresponds to problem with curvature satisfying various conditions. In those case, both topological and variational methods, and sometimes combination of them give new complementary existence and multiplicity results. We will describe some of them. Some attention will be given to the generalized forced pendulum equation \((\phi (y^\prime))^\prime + A\sin y = h(t)\) when ϕ is singular or bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ahmad, A.C. Lazer, J.L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems. Indiana Univ. Math. J. 25, 933–944 (1976)

    Google Scholar 

  2. H. Amann, A. Ambrosetti, G. Mancini, Elliptic equations with noninvertible Fredholm linear part and bounded nonlinearities. Math. Z. 158, 179–194 (1978)

    Google Scholar 

  3. A. Ambrosetti, G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat. Pura Appl. 93, 231–247 (1973)

    Google Scholar 

  4. A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Google Scholar 

  5. G. Anzellotti, The Euler equation for functionals with linear growth. Trans. Am. Math. Soc. 290, 483–501 (1985)

    Google Scholar 

  6. J. Benedikt, P. Girg, P. Takáč, On the Fredholm alternative for the p-Laplacian at higher eigenvalues (in one dimension). Nonlinear Anal. 72, 3091–3107 (2010)

    Google Scholar 

  7. P. Benevieri, J.M. do Ó, E. Souto de Medeiros, Periodic solutions for nonlinear systems with mean curvature-like operators. Nonlinear Anal. 65, 1462–1475 (2006)

    Google Scholar 

  8. P. Benevieri, J.M. do Ó, E. Souto de Medeiros, Periodic solutions for nonlinear equations with mean curvature-like operators. Appl. Math. Lett. 20, 484–492 (2007)

    Google Scholar 

  9. C. Bereanu, J. Mawhin, Nonlinear Neumann boundary value problems with ϕ-Laplacian operators. An. Stiint. Univ. Ovidius Constanta 12, 73–92 (2004)

    Google Scholar 

  10. C. Bereanu, J. Mawhin, Boundary-value problems with non-surjective ϕ-laplacian and one-sided bounded nonlinearity. Adv. Differ. Equat. 11, 35-60 (2006)

    Google Scholar 

  11. C. Bereanu, J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular ϕ-laplacian. J. Differ. Equat. 243, 536–557 (2007)

    Google Scholar 

  12. C. Bereanu, J. Mawhin, Boundary value problems for some nonlinear systems with singular ϕ-Laplacian. J. Fixed Point Theor. Appl. 4, 57–75 (2008)

    Google Scholar 

  13. C. Bereanu, J. Mawhin, Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and ϕ-Laplacian. NoDEA Nonlinear Differ. Equat. Appl. 15, 159–168 (2008)

    Google Scholar 

  14. C. Bereanu, J. Mawhin, Periodic solutions of nonlinear perturbations of ϕ-Laplacian with possibly bounded ϕ. Nonlinear Anal. 68, 1668–1681 (2008)

    Google Scholar 

  15. C. Bereanu, J. Mawhin, Nonhomogeneous boundary value problems for some nonlinear equations with singular ϕ-Laplacian. J. Math. Anal. Appl. 352, 218–233 (2009)

    Google Scholar 

  16. C. Bereanu, P. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum. Proc. Am. Math. Soc. 140, 2713–2719 (2012)

    Google Scholar 

  17. C. Bereanu, P. Jebelean, J. Mawhin, Non-homogeneous boundary value problems for ordinary and partial differential equations involving singular ϕ-Laplacians. Matemática Contemporânea 36, 51–65 (2009)

    Google Scholar 

  18. C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions for some nonlinear problems involving mean curvature operators in Euclidian and Minkowski spaces. Proc. Am. Math. Soc. 137, 161–169 (2009)

    Google Scholar 

  19. C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions for systems involving mean curvature operators in Euclidian and Minkowski spaces, in Mathematical Models in Engineering, ed. by A. Cabada, E. Liz, J.J. Nieto. Biology and Medicine (American Institute of Physics, New York, 2009), pp. 50–59

    Google Scholar 

  20. C. Bereanu, P. Jebelean, J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded ϕ-Laplacians. J. Dynam. Differ. Equat. 22, 463–471 (2010)

    Google Scholar 

  21. C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces. Math. Nachr. 283, 379–391 (2010)

    Google Scholar 

  22. C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions for Neumann problems with ϕ-Laplacians and pendulum-like nonlinearities. Discrete Contin. Dynam. Syst. A 28, 637–648 (2010)

    Google Scholar 

  23. C. Bereanu, P. Jebelean, J. Mawhin, Variational methods for nonlinear perturbations of singular ϕ-Laplacians. Rend. Lincei Mat. Appl. 22, 89–111 (2011)

    Google Scholar 

  24. C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities. Calculus of Variations and Partial Differential Equations (to appear)

    Google Scholar 

  25. C. Bereanu, P. Jebelean, J. Mawhin, Multiple solutions for Neumann and periodic problems with singular ϕ-Laplacian. J. Funct. Anal. 261, 3226–3246 (2011)

    Google Scholar 

  26. M.S. Berger, Nonlinearity and Functional Analysis (Academic, New York, 1977)

    Google Scholar 

  27. P.A. Binding, P. Drábek, Y.X. Huang, The range of the p-Laplacian. Appl. Math. Lett. 10, 77–82 (1997)

    Google Scholar 

  28. M.S. Berger, M. Schechter, On the solvability of semi-linear gradient operator equations. Adv. Math. 25, 97–132 (1977)

    Google Scholar 

  29. P.A. Binding, P. Drábek, Y.X. Huang, On the Fredholm alternative for the p-Laplacian. Proc. Am. Math. Soc. 125, 3555–3559 (1997)

    Google Scholar 

  30. D. Bonheure, P. Habets, F. Obersnel, P. Omari, Classical and non-classical solutions of a prescribed curvature equation. J. Differ. Equat. 243, 208–237 (2007)

    Google Scholar 

  31. D. Bonheure, P. Habets, F. Obersnel,P. Omari, Classical and non-classical positive solutions of a prescribed curvature equation with singularities. Rend. Istit. Mat. Univ. Trieste 39, 63–85 (2007)

    Google Scholar 

  32. H. Brezis, J. Mawhin, Periodic solutions of the forced relativistic pendulum. Differ. Integr. Equat. 23, 801–810 (2010)

    Google Scholar 

  33. H. Brezis, J. Mawhin, Periodic solutions of Lagrangian systems of relativistic oscillators. Comm. Appl. Anal. 15, 235–250 (2011)

    Google Scholar 

  34. K.C. Chang, On the periodic nonlinearity and the multiplicity of solutions. Nonlinear Anal. 13, 527–537 (1989)

    Google Scholar 

  35. J. Chu, J. Lei, M. Zhang, The stability of the equilibrium of a nonlinear planar system and application to the relativistic oscillator. J. Differ. Equat. 247, 530–542 (2009)

    Google Scholar 

  36. J.A. Cid, P.J. Torres, Solvability of some boundary value problems with ϕ-Laplacian operators. Discrete Contin. Dynam. Syst. A 23, 727–732 (2009)

    Google Scholar 

  37. C.V. Coffman, W.K. Ziemer, A prescribed mean curvature problem on domains without radial symmetry. SIAM J. Math. Anal. 22, 982–990 (1991)

    Google Scholar 

  38. C. De Coster, P. Habets, Two-Point Boundary Value Problems. Lower and Upper Solutions (Elsevier, Amsterdam, 2006)

    Google Scholar 

  39. K. Deimling, Nonlinear Functional Analysis (Springer, Berlin, 1985)

    Google Scholar 

  40. M. del Pino, P. Drábek, R. Manásevich, The Fredholm alternative at the first eigenvalue for the one-dimensional p-Laplacian. J. Differ. Equat. 151, 386–419 (1999)

    Google Scholar 

  41. P. De Nápoli, M.C. Mariani, Three solutions for quasilinear equations in \({\mathbb{R}}^{N}\), in Proceedings USA-Chile Workshop on Nonlinear Analysis (Southwest Texas State University, Texas, 2001), pp. 131–140

    Google Scholar 

  42. F.O. de Paiva, E. Massa, Semilinear elliptic problems near resonance with a nonprincipal eigenvalue. J. Math. Anal. Appl. 342, 638–650 (2008)

    Google Scholar 

  43. P. Drábek, P. Takáč, A counterexample to the Fredholm alternative for the p-Laplacian. Proc. Am. Math. Soc. 127, 1079–1087 (1999)

    Google Scholar 

  44. P. Drábek, P. Girg, R. Manásevich, Generic Fredholm alternative-type results for the one dimensional p-Laplacian. NoDEA Nonlinear Differ. Equat. Appl. 8, 285–298 (2001)

    Google Scholar 

  45. C. Fabry, J. Mawhin, M. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. Lond. Math. Soc. 18, 173–180 (1986)

    Google Scholar 

  46. L. Ferracuti, F. Papalini, Boundary value problems for strongly nonlinear multivalued equations involving differenti ϕ-Laplacians. Adv. Differ. Equat. 14, 541–566 (2009)

    Google Scholar 

  47. G. Fournier, M. Willem, Multiple solutions of the forced double pendulum equation. Ann. Inst. Henri-Poincaré. Anal. Non Linéaire 5 (suppl.), 259–281 (1989)

    Google Scholar 

  48. G. Fournier, M. Willem, Relative category and the calculus of variations, in Variational Problems, ed. by H. Berestycki, J.M. Coron, I. Ekeland (Birkhäuser, Basel, 1990), pp. 95–104

    Google Scholar 

  49. G. Fournier, D. Lupo, M. Ramos, M. Willem, Limit relative category and critical point theory, in Dynamics Reported, vol. 3 (Springer, Berlin, 1994), pp. 1–24

    Google Scholar 

  50. M. Furi, M.P. Pera, On the existence of an unbounded connected set of solutions for nonlinear equations in Banach spaces. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Mat. Fis. Natur. 47, 31–38 (1979)

    Google Scholar 

  51. M. García-Huidobro, R. Manásevich, F. Zanolin, Strongly nonlinear second-order ODE’s with unilateral conditions. Differ. Integr. Equat. 6, 1057–1078 (1993)

    Google Scholar 

  52. M. García-Huidobro, R. Manásevich, F. Zanolin, A Fredholm-like result for strongly nonlinear second order ODE’s. J. Differ. Equat. 114, 132–167 (1994)

    Google Scholar 

  53. P. Girg, Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivatives. Electronic J. Differ. Equat. 2000-63, 1–28 (2000)

    Google Scholar 

  54. P. Habets, P. Omari, Positive solutions of an indefinite prescribed mean curvature problem on a general domain. Adv. Nonlinear Stud. 4, 1–14 (2004)

    Google Scholar 

  55. P. Habets, P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem. Comm. Contemp. Math. 9 701–730 (2007)

    Google Scholar 

  56. P. Jebelean, J. Mawhin, Periodic solutions of singular nonlinear perturbations of the ordinary p-Laplacian. Adv. Nonlinear Stud. 2, 299–312 (2002)

    Google Scholar 

  57. X.F. Ke, C.L. Tang, Multiple solutions for semilinear elliptic equations near resonance at higher eigenvalues. Nonlinear Anal. 74, 805–813 (2011)

    Google Scholar 

  58. T. Kusahara, H. Usami, A barrier method for quasilinear ordinary differential equations of the curvature type. Czech. Math. J. 50, 185–196 (2000)

    Google Scholar 

  59. A. C. Lazer, S. Solimini, On periodic solutions of nonlinear differential equations with singularities. Proc. Am. Math. Soc. 99, 109–114 (1987)

    Google Scholar 

  60. J. Leray, J. Schauder, Topologie et équations fonctionnelles. Ann. Ec. Norm. Sup. 51, 45–78 (1934)

    Google Scholar 

  61. W.S. Li, Z.L. Liu, Exact number of solutions of a prescribed mean curvature equation. J. Math. Anal. Appl. 367, 486–498 (2010)

    Google Scholar 

  62. J.Q. Liu, A generalized saddle point theorem. J. Differ. Equat. 82, 372–385 (1989)

    Google Scholar 

  63. H.S. Lü, On the existence of multiple periodic solutions for the p-Laplacian. Indian J. Pure Appl. Math. 35, 1185–1199 (2004)

    Google Scholar 

  64. J. Ma, C.L. Tang, Periodic solutions for some nonautonomous second-order systems. J. Math. Anal. Appl. 275, 482–494 (2002)

    Google Scholar 

  65. T.F. Ma, M.L. Pelicer, Perturbations near resonance for the p-Laplacian in \({\mathbb{R}}^{N}\). Abstract Appl. Anal. 7:6, 323–334 (2002)

    Google Scholar 

  66. T.F. Ma, L. Sanchez, Three solutions of a quasilinear elliptic problem near resonance. Math. Slovaca 47, 451–457 (1997)

    Google Scholar 

  67. T.F. Ma, M. Ramos, L. Sanchez, Multiple solutions for a class of nonlinear boundary value problems near resonance, a variational approach. Nonlinear Anal. 30, 3301–3311 (1997)

    Google Scholar 

  68. R. Manásevich, J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Differ. Equat. 145, 367–393 (1998)

    Google Scholar 

  69. R. Manásevich, J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators. J. Korean Math. Soc. 37, 665–685 (2000)

    Google Scholar 

  70. R. Manásevich, P. Takáč, On the Fredholm alternative for the p-Laplacian in one dimension. Proc. Lond. Math. Soc. (3) 84, 324–342 (2002)

    Google Scholar 

  71. R. Manásevich, J.R. Ward Jr., On a result of Brezis and Mawhin. Proc. Am. Math. Soc. 140, 531–539 (2012)

    Google Scholar 

  72. I. Massabó, J. Pejsachowicz, On the connectivity properties of the solution set of parametrized families of compact vector fields. J. Funct. Anal. 59, 151–166 (1984)

    Google Scholar 

  73. J. Mawhin, in Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Series No. 40 (American Mathematical Society, Providence, 1979)

    Google Scholar 

  74. J. Mawhin, Forced second order conservative systems with periodic nonlinearity. Ann. Inst. Henri-Poincaré Anal. Non Linéaire 5 (suppl.), 415–434 (1989)

    Google Scholar 

  75. J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations, in Topological Methods in Ordinary Differential Equations, CIME, Montecatini Terme, 1991, ed. by M. Furi, P. Zecca. LNM 1537 (Springer, Berlin, 1993), pp. 74–142

    Google Scholar 

  76. J. Mawhin, Leray-Schauder degree: A half century of extensions and applications. Topological Meth. Nonlinear Anal. 14, 195–228 (1999)

    Google Scholar 

  77. J. Mawhin, Global results for the forced pendulum equations, in Handbook on Differential Equations, ed. by A. Cañada, P. Drábek, A. Fonda. Ordinary Differential Equations, vol. 1 (Elsevier, Amsterdam, 2004), pp. 533–589

    Google Scholar 

  78. J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian. J. Eur. Math. Soc. 8, 375–388 (2006)

    Google Scholar 

  79. J. Mawhin, Periodic solutions of the forced pendulum: classical vs relativistic. Le Matematiche 65, 97–107 (2010)

    Google Scholar 

  80. J. Mawhin, Multiplicity of solutions of variational systems involving ϕ-Laplacians with singular ϕ and periodic nonlinearities. Discrete Contin. Dynam. Syst. 32, 4015–4026 (2012)

    Google Scholar 

  81. J. Mawhin, K. Schmitt, Landesman-Lazer type problems at an eigenvalue of odd multiplicity. Results Math. 14, 138–146 (1988)

    Google Scholar 

  82. J. Mawhin, K. Schmitt, Nonlinear eigenvalue problems with the parameter near resonance. Ann. Polon. Math. 60, 241–248 (1990)

    Google Scholar 

  83. J. Mawhin, M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations. J. Differ. Equat. 52, 264–287 (1984)

    Google Scholar 

  84. J. Mawhin, M. Willem, Variational methods and boundary value problems for vector second order differential equations and applications to the pendulum equation, in Nonlinear Analysis and Optimisation, ed. by C. Vinti (Bologna, 1982). LNM 1107 (Springer, Berlin, 1984), pp. 181–192

    Google Scholar 

  85. J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems (Springer, New York, 1989)

    Google Scholar 

  86. D. Motreanu, V.V. Motreanu, N.S. Papageorgiou, Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with p-Laplacian. Trans. Am. Math. Soc. 360, 2527–2545 (2008)

    Google Scholar 

  87. D. Motreanu, V.V. Motreanu, N.S. Papageorgiou, Nonlinear Neumann problems near resonance. Indiana Univ. Math. J. 58, 1257–1279 (2009)

    Google Scholar 

  88. D.G. Northcott, Some inequalities between periodic functions and their derivatives. J. Lond. Math. Soc. 14, 198–202 (1939)

    Google Scholar 

  89. E.S. Noussair, Ch.A. Swanson, J.F. Yang, A barrier method for mean curvature problems. Nonlinear Anal. 21, 631–641 (1993)

    Google Scholar 

  90. F. Obersnel, Classical and non-classical sign changing solutions of a one-dimensional autonomous prescribed curvature equation. Adv. Nonlinear Stud. 7, 1–13 (2007)

    Google Scholar 

  91. F. Obersnel, P. Omari, Existence and multiplicity results for the prescribed mean curvature equation via lower and upper solutions. Differ. Integr. Equat. 22, 853–880 (2009)

    Google Scholar 

  92. F. Obersnel, P. Omari, On a result of C.V. Coffman and W.K. Ziemer about the prescribed mean curvature equation. Quad. Mat. Univ. Trieste 593, 1–10 (2009)

    Google Scholar 

  93. F. Obersnel, P.P. Omari, Multiple bounded variation solutions of a periodically perturbed sine-curvature equation. Comm. Contemp. Math. 13, 863–883 (2011)

    Google Scholar 

  94. Z.Q. Ou, C.M. Tang, Existence and multiplicity results for some elliptic systems at resonance. Nonlinear Anal. 71, 2660–2666 (2009)

    Google Scholar 

  95. R.S. Palais, Ljusternik-Schnirelmann theory on Banach manifolds. Topology 5, 115–132 (1966)

    Google Scholar 

  96. H.J. Pan, One-dimensional prescribed mean curvature equation with exponential nonlinearity. Nonlinear Anal. 70, 999–1010 (2009)

    Google Scholar 

  97. H.J. Pan, R.X. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations. Nonlinear Anal. 74, 1234–1260 (2011)

    Google Scholar 

  98. P. Rabinowitz, in Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conf. No. 65 (American Mathematical Society, Providence, 1986)

    Google Scholar 

  99. P. Rabinowitz, On a class of functionals invariant under a Z n action. Trans. Am. Math. Soc. 310, 303–311 (1988)

    Google Scholar 

  100. I. Rachunková, M. Tvrdy, Periodic problems with ϕ-Laplacian involving non-ordered lower and upper solutions. Fixed Point Theor. 6, 99–112 (2005)

    Google Scholar 

  101. I. Rachunková, M. Tvrdý, Periodic singular problems with quasilinear differential operator. Math. Bohemica 131, 321–336 (2006)

    Google Scholar 

  102. M. Ramos, L. Sanchez, A variational approach to multiplicity in elliptic problems near resonance. Proc. Roy. Soc. Edinb. Sect. A 127, 385–394 (1997)

    Google Scholar 

  103. M. Reeken, Stability of critical points under small perturbations. Part I : Topological theory. Manuscripta Math. 7, 387–411 (1972)

    Google Scholar 

  104. L. Sanchez, Boundary value problems for some fourth order ordinary differential equations. Applicable Anal. 38, 161–177 (1990)

    Google Scholar 

  105. J. Schauder, Der Fixpunktsatz in Funktionalräumen. Studia Math. 2, 171–180 (1930)

    Google Scholar 

  106. M. Schechter, Periodic non-autonomous second-order dynamical systems. J. Differ. Equat. 223, 290–302 (2006)

    Google Scholar 

  107. J.T. Schwartz, Nonlinear Functional Analysis (Gordon and Breach, New York, 1969)

    Google Scholar 

  108. J. Serrin, Positive solutions of a prescribed mean curvature problem, in Calculus of Variations and Partial Differential Equations, ed. by S. Hildebrandt, D. Kinderlehrer, M. Miranda. LNM 1340 (Springer, Berlin, 1988), pp. 248–255

    Google Scholar 

  109. M. Struwe, in Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 2nd edn. (Springer, Berlin, 1996)

    Google Scholar 

  110. H.M. Suo, C.L. Tang, Multiplicity results for some elliptic systems near resonance with a nonprincipal eigenvalue. Nonlinear Anal. 73, 1909–1920 (2010)

    Google Scholar 

  111. A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 77–109 (1986)

    Google Scholar 

  112. A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals. Nonlinear Anal. 15, 725–739 (1990)

    Google Scholar 

  113. C.L. Tang, Periodic solutions of non-autonomous second order systems with γ-quasisubadditive potential. J. Math. Anal. Appl. 189, 671–675 (1995)

    Google Scholar 

  114. C.L. Tang, Periodic solutions of non-autonomous second order systems. J. Math. Anal. Appl. 202, 465–469 (1996)

    Google Scholar 

  115. C.L. Tang, Some existence results for periodic solutions of non-autonomous second order systems. Acad. Roy. Belg. Bull. Cl. Sci. (6) 8, 13–19 (1997)

    Google Scholar 

  116. C.L. Tang, Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. Proc. Am. Math. Soc. 126, 3263–3270 (1998)

    Google Scholar 

  117. C.L. Tang, X.P. Wu, Periodic solutions for second order systems with not uniformly coercive potential. J. Math. Anal. Appl. 259, 386–397 (2001)

    Google Scholar 

  118. C.L. Tang, X.P. Wu, Notes on periodic solutions of subquadratic second order systems. J. Math. Anal. Appl. 285, 8–16 (2003)

    Google Scholar 

  119. C.L. Tang, X.P. Wu, A note on periodic solutions of nonautonomous second-order systems. Proc. Am. Math. Soc. 132, 1295–1303 (2004)

    Google Scholar 

  120. Y. Tian, G.S. Zhang, W.G. Ge, Periodic solutions for a quasilinear non-autonomous second-order system. J. Appl. Math. Comput. 22, 263–271 (2006)

    Google Scholar 

  121. P.J. Torres, Periodic oscillations of the relativistic pendulum with friction. Phys. Lett. A 372, 6386–6387 (2008)

    Google Scholar 

  122. P.J. Torres, Nondegeneracy of the periodically forced Liénard differential equation with ϕ-Laplacian. Comm. Contemp. Math. 13, 283–292 (2011)

    Google Scholar 

  123. G. Villari, Soluzioni periodiche di una classe di equazione differenziali del terz’ordine. Ann. Mat. Pura Appl. 73, 103–110 (2966)

    Google Scholar 

  124. Z.Y. Wang, J.H. Zhang, Periodic solutions of non-autonomous second order systems with p-Laplacian. Electron. J. Differ. Equat. 2009-17, 1–12 (2009)

    Google Scholar 

  125. J.R. Ward Jr., Periodic solutions of ordinary differential equations with bounded nonlinearities. Topological Meth. Nonlinear Anal. 19, 275–282 (2002)

    Google Scholar 

  126. X.P. Wu, Periodic solutions for nonautonomous second-order systems with bounded nonlinearity. J. Math. Anal. Appl. 230, 135–141 (1999)

    Google Scholar 

  127. X.P. Wu, C.L. Tang, Periodic solutions of a class of nonautonomous second order systems. J. Math. Anal. Appl. 236, 227–235 (1999)

    Google Scholar 

  128. X.J. Yang, On the Fredholm alternative for the p-Laplacian. Appl. Math. Comput. 153, 537–556 (2004)

    Google Scholar 

  129. X.J. Yang, The Fredholm alternative for the one-dimensional p-Laplacian. J. Math. Anal. Appl. 299, 494–507 (2004)

    Google Scholar 

  130. F.K. Zhao, X. Wu, Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity. Nonlinear Anal. 60, 325–335 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Mawhin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mawhin, J. (2013). Resonance Problems for Some Non-autonomous Ordinary Differential Equations. In: Stability and Bifurcation Theory for Non-Autonomous Differential Equations. Lecture Notes in Mathematics(), vol 2065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32906-7_3

Download citation

Publish with us

Policies and ethics