Skip to main content

Iptycenes and Their Derivatives in Molecular Balances

  • Chapter
  • First Online:
Book cover Iptycenes Chemistry
  • 1021 Accesses

Abstract

The molecular interactions play a great role in both chemistry and biology. To design better supramolecular systems and biologically active agents, it is indispensable to understand the mechanism involved in noncovalent interactions. In general, noncovalent interactions in natural complexes are overly complicated, and the precise geometry of an interaction in a conformationally dynamic biomolecule is hard to determine. Thus, the molecules, like the folding molecules, in which the small alterations in geometry lead to a considerable strength change of interaction, could be served as “molecular balances” to offer an attractive platform for the study of noncovalent interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ōki M (1990) 1,9-Disubstituted triptycenes: an excellent probe for weak molecular interactions. Acc Chem Res 23(11):351–356

    Article  Google Scholar 

  2. Mikami M, Toriumi K, Konno M, Saito Y (1975) Crystal-structure of 1,2,3,4-tetrachloro-9-t-butyltriptycene. Acta Crystallogr B 31(10):2474–2478

    Article  Google Scholar 

  3. Nogami N, Ōki M, Sato S, Saito Y (1982) Implications of X-ray crystallographic results of 1,2,3,4-tetrachloro-9-(2-oxopropyl)triptycene rotamers. Bull Chem Soc Jpn 55(11):3580–3585

    Article  CAS  Google Scholar 

  4. Ōki M, Takiguchi N, Toyota S, Yamamoto G, Murata S (1988) Rotamer populations and molecular-structure of 9-isobutyl-1,4-dimethoxytriptycene: further evidence for the presence of CH3···O hydrogen-bond. Bull Chem Soc Jpn 61(12):4295–4302

    Article  Google Scholar 

  5. Ōki M (1976) Unusually high barriers to rotation involving tetrahedral carbon-atom. Angew Chem Int Edit 15(2):87–93

    Article  Google Scholar 

  6. Nakamura M, Ōki M, Nakanish H, Yamamoto O (1974) Restricted rotation involving tetrahedral carbon. 10. Barriers to rotation of methyl-groups in 9-methyltriptycene derivatives. Bull Chem Soc Jpn 47(10):2415–2419

    Article  CAS  Google Scholar 

  7. Nakanishi H, Yamamoto O (1978) Nuclear magnetic-resonance study of exchanging systems. 11. 13C NMR-spectra of 9-ethyltriptycene derivatives and restricted rotation of ethyl group. Bull Chem Soc Jpn 51(6):1777–1783

    Article  CAS  Google Scholar 

  8. Izumi G, Yamamoto G, Ōki M (1981) Intramolecular interactions between a group bearing normal-electrons and a CH2−X where X is an electronegative group. Bull Chem Soc Jpn 54(10):3064–3068

    Article  CAS  Google Scholar 

  9. Tamura Y, Takizawa H, Yamamoto G, Ōki M, Murata S (1990) Molecular-structure of 9-chloromethyl-1,4-dimethoxytriptycene and its implications for the presence of O···CH2Cl interactions. Bull Chem Soc Jpn 63(9):2555–2563

    Article  CAS  Google Scholar 

  10. Suzuki F, Ōki M, Nakanishi H (1974) Restricted rotation involving tetrahedral carbon. 11. Barriers to rotation and conformational preferences of substituted 9-isopropyltriptycenes. Bull Chem Soc Jpn 47(12):3114–3120

    Article  CAS  Google Scholar 

  11. Suzuki F, Ōki M (1975) Restricted rotation involving tetrahedral carbon. XIV. Conformational equilibria and attractive interactions in substituted 9-benzyltriptycenes. Bull Chem Soc Jpn 48(2):596–604

    Article  CAS  Google Scholar 

  12. Ōki M, Izumi G, Yamamoto G, Nakamura N (1982) Attractive interactions between carbonyls and groups bearing lone-pair electrons in triptycene systems. Bull Chem Soc Jpn 55(1):159–166

    Article  Google Scholar 

  13. Kikuchi H, Hatakeyama S, Yamamoto G, Ōki M (1981) Restricted rotation involving the tetrahedral carbon. 40. Barriers to rotation of 9-(1-methyl-2-propenyl)triptycenes. Bull Chem Soc Jpn 54(12):3832–3836

    Article  CAS  Google Scholar 

  14. Tamura Y, Yamamoto G, Ōki M (1987) Effects of CH3···O hydrogen-bond on the rotamer populations in 9-(alkoxymethyl)-1,4-dimethyltriptycenes. Bull Chem Soc Jpn 60(10):3789–3790

    Article  CAS  Google Scholar 

  15. Tamura Y, Yamamoto G, Ōki M (1987) CH3=O hydrogen-bond: implications of its presence from the substituent effects on the populations of rotamers in 4-substituted 9-ethyl-1-methoxytriptycenes and 9-(substituted phenoxymethyl)-1,4-dimethyltriptycenes. Bull Chem Soc Jpn 60(5):1781–1788

    Article  CAS  Google Scholar 

  16. Tamura Y, Yamamoto G, Ōki M (1986) Substituent effects on the populations of rotational isomers in 9-(aryloxymethyl)-1,4-dimethyl triptycenes: implications for the presence of CH3···O hydrogen-bond. Chem Lett (9):1619–1622

    Google Scholar 

  17. Yamamoto G, Ōki M (1981) Restricted rotation involving the tetrahedral carbon. 36. Stereodynamics of 9-(2-methylbenzyl)triptycene derivatives. Bull Chem Soc Jpn 54(2):481–487

    Article  CAS  Google Scholar 

  18. Nakai Y, Inoue K, Yamamoto G, Ōki M (1989) Implications of unusual population ratios in rotational isomers of 9-(4-substituted benzyl)-8,13-dichloro-1,4-dimethyltriptycenes and 4-substituted 9-benzyl-8,13-dichloro-1-methyltriptycenes CH3··· p hydrogen-bond. Bull Chem Soc Jpn 62(9):2923–2931

    Article  CAS  Google Scholar 

  19. Gung BW, Xue X, Reich HJ (2005) Off-center oxygen–arene interactions in solution: a quantitative study. J Org Chem 70(18):7232–7237

    Article  CAS  Google Scholar 

  20. Gung BW, Zou Y, Xu Z, Amicangelo JC, Irwin DG, Ma S, Zhou HC (2008) Quantitative study of interactions between oxygen lone pair and aromatic rings: substituent effect and the importance of closeness of contact. J Org Chem 73(2):689–693

    Article  CAS  Google Scholar 

  21. Gung BW, Emenike BU, Lewis M, Kirschbaum K (2010) Quantification of CH··· p interactions: implications on how substituent effects influence aromatic interactions. Chem Eur J 16(41):12357–12362

    Article  CAS  Google Scholar 

  22. Gung BW, Xue XW, Reich HJ (2005) The strength of parallel-displaced arene–arene interactions in chloroform. J Org Chem 70(9):3641–3644

    Article  CAS  Google Scholar 

  23. Gung BW, Patel M, Xue XW (2005) A threshold for charge transfer in aromatic interactions? A quantitative study of π−stacking interactions. J Org Chem 70(25):10532–10537

    Article  CAS  Google Scholar 

  24. Gung BW, Emenike BU, Alverez CN, Rakovan J, Kirschbaum K, Jain N (2010) Relative substituent position on the strength of ππ stacking interactions. Tetrahedron Lett 51(13):1648–1650

    Article  CAS  Google Scholar 

  25. Gung BW, Xue X, Zou Y (2007) Enthalpy (ΔH) and entropy (ΔS) for p −stacking interactions in near-sandwich configurations: relative importance of electrostatic, dispersive, and charge-transfer effects. J Org Chem 72(7):2469–2475

    Article  CAS  Google Scholar 

  26. Gung BW, Wekesa F, Barnes CL (2008) Stacking interactions between nitrogen-containing six-membered heterocyclic aromatic rings and substituted benzene: studies in solution and in the solid state. J Org Chem 73(5):1803–1808

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Feng Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, CF., Ma, YX. (2013). Iptycenes and Their Derivatives in Molecular Balances. In: Iptycenes Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32888-6_13

Download citation

Publish with us

Policies and ethics