Skip to main content

Deep Intronic NF1 Mutations and Possible Therapeutic Interventions

  • Chapter
  • First Online:
  • 1535 Accesses

Abstract

A significant proportion of germline mutations causing neurofibromatosis type 1 affect the correct splicing of the NF1 gene. Splicing is a complex mechanism by which introns from a pre-mRNA are removed. This process is finely regulated at the cellular level, and it has been shown that it can be modulated by using antisense oligonucleotides (AONs). Multiple studies have demonstrated the power of AONs in modulating abnormal splicing caused by constitutive DNA mutations, first in cultured cells, later in preclinical animal models, and currently in several promising clinical trials. A subset of splicing mutations, known as deep intronic mutations, create or strengthen acceptor or donor splice sites that, using a wild-type counterpart sequence, lead to the inclusion of a cryptic exon in the mRNA that will eventually produce an aberrant protein. In NF1, deep intronic mutations account for approximately 2 % of all NF1 germline mutations identified to date. Here we review different examples in which phosphorodiamidate morpholino oligomers (PMOs, a class of AONs) have been used to efficiently correct the abnormal splicing produced by NF1 deep intronic mutations. Reestablishment of normal splicing after PMO treatment has been analyzed at the mRNA level in different patient-derived primary cell cultures. Further, indirect evidence of neurofibromin function restoration has been assessed by quantifying the levels of active Ras before and after PMO treatment. In vitro results collected so far have demonstrated the considerable potential of this type of antisense therapy for deep intronic NF1-causing mutations, although further experimental studies, particularly in preclinical animal models, will be required in order to safely translate these results into clinical trials and eventually to the clinic. The success of clinical trials using AON technology for other mis-splicing mutations causing Duchenne muscular dystrophy (DMD) is encouraging and delineates a possible path from bench to bedside for these types of mutations causing neurofibromatosis type 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aartsma-Rus A, Bremmer-Bout M, Janson AA, den Dunnen JT, van Ommen GJ, van Deutekom JC (2002) Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy. Neuromuscul Disord 12(Suppl 1):S71–S77

    Article  PubMed  Google Scholar 

  • Aartsma-Rus A, Janson AA, Kaman WE, Bremmer-Bout M, den Dunnen JT, Baas F, van Ommen GJ, van Deutekom JC (2003) Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 12(8):907–914

    Article  PubMed  CAS  Google Scholar 

  • Aartsma-Rus A, Janson AA, Kaman WE, Bremmer-Bout M, van Ommen GJ, den Dunnen JT, van Deutekom JC (2004) Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet 74(1):83–92

    Article  PubMed  CAS  Google Scholar 

  • Abes R, Moulton HM, Clair P, Yang ST, Abes S, Melikov K, Prevot P, Youngblood DS, Iversen PL, Chernomordik LV et al (2008) Delivery of steric block morpholino oligomers by (R-X-R)4 peptides: structure-activity studies. Nucleic Acids Res 36(20):6343–6354

    Article  PubMed  CAS  Google Scholar 

  • Ars E, Serra E, Garcia J, Kruyer H, Gaona A, Lazaro C, Estivill X (2000) Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum Mol Genet 9(2):237–247 [published erratum appears in Hum Mol Genet 2000 9(4):659]

    Article  PubMed  CAS  Google Scholar 

  • Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, Abbs S, Garralda ME, Bourke J, Wells DJ et al (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378(9791):595–605

    Article  PubMed  CAS  Google Scholar 

  • Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 90(18):8673–8677

    Article  PubMed  CAS  Google Scholar 

  • Du L, Pollard JM, Gatti RA (2007) Correction of prototypic ATM splicing mutations and aberrant ATM function with antisense morpholino oligonucleotides. Proc Natl Acad Sci USA 104(14):6007–6012

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Rodriguez J, Castellsague J, Benito L, Benavente Y, Capella G, Blanco I, Serra E, Lazaro C (2011) A mild neurofibromatosis type 1 phenotype produced by the combination of the benign nature of a leaky NF1-splice mutation and the presence of a complex mosaicism. Hum Mutat 32(7):705–709

    Article  PubMed  CAS  Google Scholar 

  • Galletti R, Masciarelli S, Conti C, Matusali G, Di Renzo L, Meschini S, Arancia G, Mancini C, Mattia E (2007) Inhibition of Epstein Barr Virus LMP1 gene expression in B lymphocytes by antisense oligonucleotides: uptake and efficacy of lipid-based and receptor-mediated delivery systems. Antiviral Res 74(2):102–110

    Article  PubMed  CAS  Google Scholar 

  • Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N, Holling T, Janson AA, Platenburg GJ, Sipkens JA et al (2011) Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 364(16):1513–1522

    Article  PubMed  CAS  Google Scholar 

  • Goyenvalle A, Babbs A, Powell D, Kole R, Fletcher S, Wilton SD, Davies KE (2010) Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping. Mol Ther 18(1):198–205

    Article  PubMed  CAS  Google Scholar 

  • Gurvich OL, Tuohy TM, Howard MT, Finkel RS, Medne L, Anderson CB, Weiss RB, Wilton SD, Flanigan KM (2008) DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy. Ann Neurol 63(1):81–89

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Wood MJ (2011) Genetic therapies for RNA mis-splicing diseases. Trends Genet 27(5):196–205

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk H, de Winter CL, van Ommen GJ, van Deutekom JC, Aartsma-Rus A (2009) Development of antisense-mediated exon skipping as a treatment for Duchenne muscular dystrophy. Ann N Y Acad Sci 1175:71–79

    Article  PubMed  CAS  Google Scholar 

  • Jeong SY, Park SJ, Kim HJ (2006) The spectrum of NF1 mutations in Korean patients with neurofibromatosis type 1. J Korean Med Sci 21(1):107–112

    Article  PubMed  CAS  Google Scholar 

  • Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyannopoulos P et al (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8(10):918–928

    Article  PubMed  CAS  Google Scholar 

  • Koshkin AA, Wengel J (1998) Synthesis of novel 2′,3′-linked bicyclic thymine ribonucleosides. J Org Chem 63(8):2778–2781

    Article  PubMed  CAS  Google Scholar 

  • Kurreck J (2003) Nucleic acids chemistry and biology. Angew Chem Int Ed Engl 42(44):5384–5385

    Article  PubMed  CAS  Google Scholar 

  • Lacerra G, Sierakowska H, Carestia C, Fucharoen S, Summerton J, Weller D, Kole R (2000) Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci USA 97(17):9591–9596

    Article  PubMed  CAS  Google Scholar 

  • Larsen HJ, Bentin T, Nielsen PE (1999) Antisense properties of peptide nucleic acid. Biochim Biophys Acta 1489(1):159–166

    Article  PubMed  CAS  Google Scholar 

  • Li YF, Morcos PA (2008) Design and synthesis of dendritic molecular transporter that achieves efficient in vivo delivery of morpholino antisense oligo. Bioconjug Chem 19(7):1464–1470

    Article  PubMed  CAS  Google Scholar 

  • Manoharan M (1999) 2′-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim Biophys Acta 1489(1):117–130

    Article  PubMed  CAS  Google Scholar 

  • McClorey G, Fall AM, Moulton HM, Iversen PL, Rasko JE, Ryan M, Fletcher S, Wilton SD (2006) Induced dystrophin exon skipping in human muscle explants. Neuromuscul Disord 16(9–10):583–590

    Article  PubMed  CAS  Google Scholar 

  • Mercatante DR, Kole R (2002) Control of alternative splicing by antisense oligonucleotides as a potential chemotherapy: effects on gene expression. Biochim Biophys Acta 1587(2–3):126–132

    PubMed  CAS  Google Scholar 

  • Merdan T, Kopecek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54(5):715–758

    Article  PubMed  CAS  Google Scholar 

  • Messiaen L, Wimmer K (2008) NF1 mutational spectrum. In: Kaufmann D (ed) Neurofibromatoses, Monographs in human genetics. Karger, Basel, pp 63–77

    Chapter  Google Scholar 

  • Messiaen LM, Callens T, Mortier G, Beysen D, Vandenbroucke I, Van Roy N, Speleman F, Paepe AD (2000) Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15(6):541–555

    Article  PubMed  CAS  Google Scholar 

  • Morcos PA, Li Y, Jiang S (2008) Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. Biotechniques 45(6):613–614, 616, 618 passim

    Google Scholar 

  • Moulton JD, Jiang S (2009) Gene knockdowns in adult animals: PPMOs and vivo-morpholinos. Molecules 14(3):1304–1323

    Article  PubMed  CAS  Google Scholar 

  • Muntoni F (2010) The development of antisense oligonucleotide therapies for Duchenne muscular dystrophy: report on a TREAT-NMD workshop hosted by the European Medicines Agency (EMA), on September 25th 2009. Neuromuscul Disord 20(5):355–362

    Article  PubMed  CAS  Google Scholar 

  • Muntoni F, Wood MJ (2011) Targeting RNA to treat neuromuscular disease. Nat Rev Drug Discov 10(8):621–637

    Article  PubMed  CAS  Google Scholar 

  • Osorio FG, Navarro CL, Cadinanos J, Lopez-Mejia IC, Quiros PM, Bartoli C, Rivera J, Tazi J, Guzman G, Varela I et al (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 3(106):106ra107

    Article  PubMed  Google Scholar 

  • Perez B, Rodriguez-Pascau L, Vilageliu L, Grinberg D, Ugarte M, Desviat LR (2010) Present and future of antisense therapy for splicing modulation in inherited metabolic disease. J Inherit Metab Dis 33(4):397–403

    Article  PubMed  CAS  Google Scholar 

  • Perrin G, Morris MA, Antonarakis SE, Boltshauser E, Hutter P (1996) Two novel mutations affecting mRNA splicing of the neurofibromatosis type 1 (NF1) gene. Hum Mutat 7(2):172–175

    Article  PubMed  CAS  Google Scholar 

  • Pros E, Fernandez-Rodriguez J, Canet B, Benito L, Sanchez A, Benavides A, Ramos FJ, Lopez-Ariztegui MA, Capella G, Blanco I et al (2009) Antisense therapeutics for neurofibromatosis type 1 caused by deep intronic mutations. Hum Mutat 30(3):454–462

    Article  PubMed  CAS  Google Scholar 

  • Pros E, Gomez C, Martin T, Fabregas P, Serra E, Lazaro C (2008) Nature and mRNA effect of 282 different NF1 point mutations: focus on splicing alterations. Hum Mutat 29(9):E173–E193

    Article  PubMed  Google Scholar 

  • Raponi M, Upadhyaya M, Baralle D (2006) Functional splicing assay shows a pathogenic intronic mutation in neurofibromatosis type 1 (NF1) due to intronic sequence exonization. Hum Mutat 27(3):294–295

    Article  PubMed  CAS  Google Scholar 

  • Rincon A, Ugarte M, Aguado C, Desviat LR, Sanchez-Alcudia R, Perez B (2007) Propionic and methylmalonic acidemia: antisense therapeutics for intronic variations causing aberrantly spliced messenger RNA. Am J Hum Genet 81(6)

    Google Scholar 

  • Rodriguez-Pascau L, Coll MJ, Vilageliu L, Grinberg D (2009) Antisense oligonucleotide treatment for a pseudoexon-generating mutation in the NPC1 gene causing Niemann-Pick type C disease. Hum Mutat 30(11):E993–E1001

    Article  PubMed  Google Scholar 

  • Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 11(4):440–445

    Article  PubMed  CAS  Google Scholar 

  • Seiffert M, Stilgenbauer S, Dohner H, Lichter P (2007) Efficient nucleofection of primary human B cells and B-CLL cells induces apoptosis, which depends on the microenvironment and on the structure of transfected nucleic acids. Leukemia 21(9):1977–1983

    Article  PubMed  CAS  Google Scholar 

  • Spits C, De Rycke M, Van Ranst N, Joris H, Verpoest W, Lissens W, Devroey P, Van Steirteghem A, Liebaers I, Sermon K (2005) Preimplantation genetic diagnosis for neurofibromatosis type 1. Mol Hum Reprod 11(5):381–387

    Article  PubMed  CAS  Google Scholar 

  • Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489(1):141–158

    Article  PubMed  CAS  Google Scholar 

  • Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7(3):187–195

    Article  PubMed  CAS  Google Scholar 

  • Suwanmanee T, Sierakowska H, Fucharoen S, Kole R (2002) Repair of a splicing defect in erythroid cells from patients with beta-thalassemia/HbE disorder. Mol Ther 6(6):718–726

    Article  PubMed  CAS  Google Scholar 

  • Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengut S, Tolun A, Chessa L, Sanal O, Bernatowska E, Gatti RA et al (1999) Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet 64(6):1617–1631

    Article  PubMed  CAS  Google Scholar 

  • Thierry AR, Vives E, Richard JP, Prevot P, Martinand-Mari C, Robbins I, Lebleu B (2003) Cellular uptake and intracellular fate of antisense oligonucleotides. Curr Opin Mol Ther 5(2):133–138

    PubMed  CAS  Google Scholar 

  • van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop K, van der Kooi AJ, Goemans NM et al (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357(26):2677–2686

    Article  PubMed  CAS  Google Scholar 

  • van Putten M, Aartsma-Rus A (2011) Opportunities and challenges for the development of antisense treatment in neuromuscular disorders. Expert Opin Biol Ther 11(8):1025–1037

    Article  PubMed  CAS  Google Scholar 

  • Vega AI, Perez-Cerda C, Desviat LR, Matthijs G, Ugarte M, Perez B (2009) Functional analysis of three splicing mutations identified in the PMM2 gene: toward a new therapy for congenital disorder of glycosylation type Ia. Hum Mutat 30(5):795–803

    Article  PubMed  CAS  Google Scholar 

  • Wimmer K, Roca X, Beiglbock H, Callens T, Etzler J, Rao AR, Krainer AR, Fonatsch C, Messiaen L (2007) Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5′ splice-site disruption. Hum Mutat 28(6):599–612

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Moulton HM, Iversen PL, Jiang J, Li J, Li J, Spurney CF, Sali A, Guerron AD, Nagaraju K et al (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci USA 105(39):14814–14819

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Moulton HM, Betts C, Seow Y, Boutilier J, Iverson PL, Wood MJ (2009) A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet 18(22):4405–4414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients who participated in this study for their willingness to contribute and to collaborate in all the proposed experiments. We thank Josep Biayna for critical advice and corrections to the manuscript as well as all the members of the ICO-IMPPC Neurofibromatosis working group. The authors wish to extend special thanks to the Asociación Española de Afectados de Neurofibromatosis for the grant awarded and for their constant support during the research. We would like also to thank the Asociación Española Contra el Cáncer, which recognized our group as one of the 2010 stable cancer research groups. Contract grant sponsor: Spanish Health Research Fund; Carlos III Health Institute; Catalan Health Institute and Autonomous Government of Catalonia. Contract grant numbers: ISCIIIRETIC: RD06/0020/1051, RD06/0020/1050, 2009SGR290, PI10/01422, CA08/00248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conxi Lázaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lázaro, C., Fernández-Rodríguez, J., Serra, E. (2012). Deep Intronic NF1 Mutations and Possible Therapeutic Interventions. In: Upadhyaya, M., Cooper, D. (eds) Neurofibromatosis Type 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32864-0_13

Download citation

Publish with us

Policies and ethics