Skip to main content

Stalk Inhomogeneity and Steam Explosion Integrated Fractional Refining Technology System

  • Chapter
  • First Online:
Book cover Pretreatment Techniques for Biofuels and Biorefineries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter presents several integrated refining and fractionation technologies for multiple products platform based on the understanding of the heterogeneous property of corn stalk. This heterogeneous property was found at the levels of tissue, cell, and chemical composition. This property can be advantageous when proper fractionation technologies are adopted to produce different products. Based on low pressure steam explosion technology, steam explosion integrated mechanical carding, steam explosion integrated super grinding and steam explosion integrated washing and alkali extraction are designed to realize stalk fractionation at different levels. Industry implementation of these technologies was also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen HZ, Qiu WH (2010) Key technologies for bioethanol production from lignocellulose. Biotechnol Adv 28(5):556–562

    Article  Google Scholar 

  2. FitzPatrick M, Champagne P, Cunningham MF et al (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101(23):8915–8922

    Article  Google Scholar 

  3. Tim Beringer WLaSS (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3:299–312

    Article  Google Scholar 

  4. Erb KH, Krausmann F, Lucht W et al (2009) Embodied HANPP: mapping the spatial disconnect between global biomass production and consumption. Ecol Econ 69(2):328–334

    Article  Google Scholar 

  5. Ballesteros M, Oliva J, Negro M et al (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39(12):1843–1848

    Article  Google Scholar 

  6. Gargulak J, Lebo S (2000) Commercial use of lignin-based materials. ACS Publications, Washinton, DC, pp 304–320

    Google Scholar 

  7. Zhang MJ, Wang F, Su RX et al (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101(13):4959–4964

    Article  Google Scholar 

  8. Hahn-Hägerdal B, Karhumaa K, Fonseca C et al (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953

    Article  Google Scholar 

  9. Chen HZ, Li HQ, Liu LY (2011) The inhomogeneity of corn stover and its effects on bioconversion. Biomass Bioenergy 35(5):1940–1945

    Article  Google Scholar 

  10. Jin SY, Chen HZ (2006) Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochem Eng J 30(3):225–230

    Article  MathSciNet  Google Scholar 

  11. Chen HZ, Liu LY (2007) Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol 98(3):666–676. doi:10.1016/j.biortech.2006.02.029

    Article  Google Scholar 

  12. Saha BC, Iten LB, Cotta MA et al (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700

    Article  Google Scholar 

  13. Pérez J, Ballesteros I, Ballesteros M et al (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87(17):3640–3647

    Article  Google Scholar 

  14. Nguyen TAD, Kim KR, Han SJ et al (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101(19):7432–7438

    Article  Google Scholar 

  15. Maekawa E (1996) On an available pretreatment for the enzymatic saccharification of lignocellulosic materials. Wood Sci Technol 30(2):133–139

    Article  MathSciNet  Google Scholar 

  16. Cui QJ, Zhu HG, Wang DY et al (2011) Effect on biogas yield of straw with twin-screw extruder physical-chemical combination pretreatment. Trans Chin Soc Agric Eng 27(1):280–285

    Google Scholar 

  17. Chen W, Yu H, Liu Y et al (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811

    Article  Google Scholar 

  18. Sachs J (1875) Text-book of botany, morphological and physiological. Clarendon Press, Oxford

    Google Scholar 

  19. Evert RF, Esau K (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley, New York

    Book  Google Scholar 

  20. Liu LY, Chen HZ (2006) The fractionation of straw and its high value conversion. Dissertation, Institute of Process Engineering, Chinese Academy of Sciences

    Google Scholar 

  21. Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  Google Scholar 

  22. Larsson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67(3):1163–1170

    Article  Google Scholar 

  23. Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50(1):3–15

    Article  Google Scholar 

  24. Guo GL, Hsu DC, Chen WH et al (2009) Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition. Enzyme Microb Technol 45(2):80–87

    Article  Google Scholar 

  25. Persson P, Andersson J, Gorton L et al (2002) Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. J Agric Food Chem 50(19):5318–5325

    Article  Google Scholar 

  26. Sun FB, Chen HZ (2008) Comparison of atmospheric aqueous glycerol and steam explosion pretreatments of wheat straw for enhanced enzymatic hydrolysis. J Chem Technol Biotechnol 83(5):707–714

    Article  Google Scholar 

  27. Liu LY, Chen HZ (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Chin Sci Bull 51(20):2432–2436

    Article  Google Scholar 

  28. Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials—a review. Bioresour Technol 68(1):71–77

    Article  Google Scholar 

  29. Guo P, Mochidzuki K, Zhang D et al (2011) Effects of different pretreatment strategies on corn stalk acidogenic fermentation using a microbial consortium. Bioresour Technol 102(16):7526–7531

    Article  Google Scholar 

  30. Grous WR, Converse AO, Grethlein HE (1986) Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb Technol 8(5):274–280

    Article  Google Scholar 

  31. Jacquet N, Quievy N, Vanderghem C et al (2011) Influence of steam explosion on the thermal stability of cellulose fibres. Polym Degrad Stab 96(9):1582–1588

    Article  Google Scholar 

  32. Rocha G, Gonçalves A, Oliveira B et al (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod 35(1):274–279

    Article  Google Scholar 

  33. Kumar Biswas A, Umeki K, Weihong Y et al (2011) Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment. Fuel Process Technol 92(10):1849–1854

    Article  Google Scholar 

  34. Brugnago RJ, Satyanarayana KG, Wypych F et al (2011) The effect of steam explosion on the production of sugarcane bagasse/polyester composites. Composites Part A 42(4):364–370

    Article  Google Scholar 

  35. Jin SY, Chen HZ (2007) Fractionation of fibrous fraction from steam-exploded rice straw. Process Biochem 42(2):188–192. doi:10.1016/j.procbio.2006.07.030

    Article  Google Scholar 

  36. Chen HZ, Han YJ, Xu J (2008) Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochem 43(12):1462–1466

    Article  MATH  Google Scholar 

  37. Laborotary NRE (2008) Clean fractionation. http://www.nrel.gov/biomass/publications.html. Accessed Oct 2008

  38. Chen HZ, Wang L (2011) Method for fully utilizing biobased products prepared by semicellulose of straws as well as components thereof. PCT/CN2011/000142

    Google Scholar 

  39. Wang L (2010) Key process of butanol production from steam-exploded corn stover. Dissertation, Institute of Process Engineering, Chinese Academy of Sciences

    Google Scholar 

Download references

Acknowledgments

Financial support to this study is provided by the National Basic Research Program of China (973 Project, No. 2011CB707401), the National High Technology Research and Development Program of China (863 Program, SS2012AA022502), the National Key Project of Scientific and Technical Supporting Program of China (No. 2011BAD22B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, H., Zhao, J. (2013). Stalk Inhomogeneity and Steam Explosion Integrated Fractional Refining Technology System. In: Fang, Z. (eds) Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32735-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32735-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32734-6

  • Online ISBN: 978-3-642-32735-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics