Skip to main content

Pretreatment of Sugarcane Bagasse and Leaves: Unlocking the Treasury of “Green Currency”

  • Chapter
  • First Online:
Book cover Pretreatment Techniques for Biofuels and Biorefineries

Abstract

Sugarcane residues (bagasse and leaves/trash) are the principal feedstock in Asia, South America, Africa, and other parts of the world. The judicious application of this feedstock into value-added products such as fuel ethanol, xylitol, organic acids, industrial enzymes, etc. may provide a strong economic platform along with clean and safe environment. Pretreatment is an inevitable process to harness the carbohydrate fraction of sugarcane bagasse and leaves into readily available sugars by cellulase-mediated process for the production of house-hold commodities. Several methods (physical, physico-chemical, chemical, and biological) have been adopted for the pretreatment of sugarcane residues. Pretreatment methods with pros and cons are employed either to depolymerize hemicellulosic fraction or lignin degradation to make cellulose more amenable for improved cellulolytic enzymes action. The choice of pretreatment methods depends upon its precise mechanistic action on lignin or hemicelluloses with fewer inhibitory products, minimal sugar loss by increasing the cellulosic surface area for subsequent enzymatic action to obtain desired sugars recovery. Furthermore, economics and environmental impacts are two important considerations for the selection of pretreatment method. This chapter aims to explore a better understanding of multiple pretreatment methodologies applied to the sugarcane residues along with economics and environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour Technol 74:69–80

    Article  Google Scholar 

  2. Chandel AK, Silva SS, Carvalho W, Singh OV (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20

    Article  Google Scholar 

  3. Dias MOS, Modesto M, Ensinas AV, Nebra SA, Filho RM, Rossel CEV (2009) Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87:1206–1216

    Article  Google Scholar 

  4. Ojeda K, Avila O, Suarez J, Kafaro V (2010) Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production—Part 1. Chem Eng Res Des 89:270–279

    Article  Google Scholar 

  5. Giese EC, Chandel AK, dos Oliveira IS, Silva SS (2012) Prospects for the bioethanol production from sugarcane feedstock: focus on Brazil. In: Goncalves JF, Correia KD (eds) Sugarcane: production, cultivation and uses. Nova Science Publishers, New York

    Google Scholar 

  6. Blair Euteneuer (2011) World’s top 10 sugar-producing countries in 2010–2011. http://www.bloomberg.com/news/2011–10-06/world-s-top-10-sugar-producing-countriesin-2010–2011 -table-.html. Accessed 20 June 2012

  7. Kim S, Dale EB (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  8. Krishnan C, Sousa LC, Jin M, Chang L, Dale BE, Balan V (2010) Alkali based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107:441–450

    Article  Google Scholar 

  9. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  10. Moiser N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  11. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  Google Scholar 

  12. Chandel AK, Kapoor RK, Singh AK, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950

    Article  Google Scholar 

  13. Chandel AK, Kapoor RK, Narasu ML, Viswadevan V, Kumaran SSG, Ravinder R, Rao LV, Tripathi KK, Lal B, Kuhad RC (2007) Economic evaluation and environmental benefits of biofuel: an Indian perspective. Int J Global Energy Issues 28:357–381

    Article  Google Scholar 

  14. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  Google Scholar 

  15. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  Google Scholar 

  16. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  Google Scholar 

  17. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:1–17

    Article  Google Scholar 

  18. Himmel ME, Ding S, Johnson D, Adney W, Nimlos M, Brady J, Foust T (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  Google Scholar 

  19. Ferreira-Leitao V, Perrone CC, Rodrigues J, Franke APM, Macrelli S, Zacchi G (2010) An approach to the utilization of CO2 as impregnating agent in steam pretreatment of sugarcane bagasse and leaves for ethanol production. Biotechnol Biofuels 3:1–8

    Article  Google Scholar 

  20. Chundawat SPS, Donohoe BS, Sousa LDS, Elder T, Agarwal UP, Lu F, Ralph J, Himmel ME, Balan V, Dale BE (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4:973–984

    Article  Google Scholar 

  21. Brienzo M, Carvalho W, Milagres AMF (2010) Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Appl Biochem Biotechnol 162:1195–1205

    Article  Google Scholar 

  22. Mesa L, González E, Ruiz E, Romero I, Cara C, Felissia F, Castro E (2010) Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: application of 23 experimental design. Appl Energy 87:109–114

    Article  Google Scholar 

  23. Mesa L, González E, Cara C, González M, Castro E, Mussatto SI (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162

    Article  Google Scholar 

  24. da Silva SA, Lee S-H, Endo T, Bon EPS (2011) Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ({Emim} {Ac}). Bioresour Technol 102:10505–10509

    Article  Google Scholar 

  25. da Silva AS, Inoue H, Endo T, Yano S, Bon EPS (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:7402–7409

    Article  Google Scholar 

  26. Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V, Pichyangkura R, Rengpipat S, Eurwilaichitr L (2010) Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J Biosci Bioeng 110:18–25

    Article  Google Scholar 

  27. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68

    Google Scholar 

  28. Binod P, SatyanagalakshmI K, Sindhu R, Janu KU, Sukumaran RK, Pandey A (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy 37:109–116

    Article  Google Scholar 

  29. Alvira P, Tomás-Pejó E, Ballestero M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  30. Laser M, Schulman D, Allen SG, Lichwa J, Antal Jr MJ, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44

    Article  Google Scholar 

  31. Lavarack BP, Griffin GJ, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicelluloses to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380

    Article  Google Scholar 

  32. Dekker RFH, Wallis AFA (1983) Enzymatic saccharification of sugarcane bagasse pretreated by autohydrolysis—steam explosion. Biotechnol Bioeng 25:3027–3048

    Article  Google Scholar 

  33. Brugnago RJ, Satyanarayana KG, Wypych F, Ramos LP (2011) The effect of steam explosion on the production of sugarcane bagasse/polyester composites. Composites: Part A Appl Sci Manuf 42:364–370

    Article  Google Scholar 

  34. Singh RK, Varma AJ, Laxman RS, Rao M (2009) Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase. Bioresour Technol 100:6679–6681

    Article  Google Scholar 

  35. Sendelius J (2005) Steam pretreatment optimisation for sugarcane bagasse in bioethanol production. Master of Science Thesis, Department of Chemical Engineering, Lund University, Sweden

    Google Scholar 

  36. Narayanaswamy N, Faik A, Goetz DJ, Gu T (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000

    Article  Google Scholar 

  37. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renewable Energy 37:19–27

    Article  Google Scholar 

  38. Zheng Y, Lin H-M, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896

    Article  Google Scholar 

  39. Carrasco C, Baudel HM, Sendelius J, Modig T, Roslander C, Galbe M, Hahn-Hägerdal B, Zacchi G, Lidén G (2010) SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse. Enzyme Microb Technol 46:64–73

    Article  Google Scholar 

  40. Prior BA, Day DF (2008) Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, β-glucosidase, and hemicellulase preparations. Appl Biochem Biotechnol 146:151–164

    Article  Google Scholar 

  41. Chandel AK, Chandrasekhar G, Narasu ML, Rao LV (2010) Simultaneous saccharification and fermentation (SSF) of aqueous ammonia pretreated Saccharum spontaneum (wild sugarcane) for second generation ethanol production. Sugar Technol 12:125–132

    Article  Google Scholar 

  42. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    Google Scholar 

  43. Aita GA, Salvi DA, Walker MS (2011) Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresour Technol 102:4444–4448

    Article  Google Scholar 

  44. Canilha L, Santos VTO, Rocha GJM, Silva JBM, Giulietti M, Silva SS, Felipe MGA, Ferraz A, Milagres AMF, Carvalho W (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38:1467–1475

    Article  Google Scholar 

  45. Sarrouh B, Silva S, Santos D, Converti A (2007) Technical/economical evaluation of sugarcane bagasse hydrolysis for bioethanol production. Chem Eng Technol 30:270–275

    Article  Google Scholar 

  46. Moutta RO, Chandel AK, Rodrigues RCLB, Silva MB, Rocha GJM, Silva SS (2011) Statistical optimization of sugarcane leaves straw hydrolysis into simple sugars by dilute sulfuric acid as a catalyst. Sug Tech. doi:10.1007/s12355-011-0116-y

    Google Scholar 

  47. Fonseca BG, Moutta RO, Ferraz FO, Vieira ER, Nogueira AS, Baratella BF, Rodrigues LC, Hou-Rui Z, Silva SS (2011) Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast. J Ind Microbiol Biotechnol 38:199–207

    Article  Google Scholar 

  48. Chandel AK, Silva SS, Singh OV (2011) Detoxification of lignocellulosic hydrolysates for improved bioconversion of bioethanol. In: Bernardes MAS (ed) Biofuel production—recent developments and prospects. In Tech, Rijeka

    Google Scholar 

  49. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  Google Scholar 

  50. Chandel AK, Chandrasekhar G, Silva MB, Silva SS (2011) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32:187–202

    Google Scholar 

  51. Wu L, Li Y, Arakane M, Ike M, Wada M, Terajima Y, Ishikawa S, Tokuyasu K (2011) Efficient conversion of sugarcane stalks into ethanol employing low temperature alkali pretreatment method. Bioresour Technol 102:11183–11188

    Article  Google Scholar 

  52. Rivera EC, Rabelo SC, dos Reis Garcia D, Filho RM, da Costa AC (2010) Enzymatic hydrolysis of sugarcane bagasse for bioethanol production: determining optimal enzyme loading using neural networks. J Chem Technol Biotechnol 85:983–992

    Article  Google Scholar 

  53. Karr WE, Holtzapple T (2000) Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenergy 18:189–199

    Article  Google Scholar 

  54. Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M, Tokuyasu K (2011) Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour Technol 102:4793–4799

    Article  Google Scholar 

  55. Rabelo SC, Carrere H, Filho MR, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102:7887–7895

    Article  Google Scholar 

  56. Rocha GJM, Goncalves AR, Oliveira BR, Olivares EG, Rossell CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod 35:274–279

    Article  Google Scholar 

  57. Xu F, Sun JX, Liu CF, Sun RC (2006) Comparative study of alkali- and acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohydr Res 341:253–261

    Article  Google Scholar 

  58. Zhao X, Peng F, Cheng K, Liu D (2009) Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali--peracetic acid pretreatment. Enzyme Microb Technol 44:17–23

    Article  Google Scholar 

  59. Martín C, Thomsen AB (2007) Wet oxidation pretreatment of lignocellulosic residues of sugarcane, rice, cassava and peanuts for ethanol production. J Chem Technol Biotechnol 82:174–181

    Article  Google Scholar 

  60. Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health 24:421–433

    Article  Google Scholar 

  61. Zhao XB, Wang L, Liu DH (2008) Technical note peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 83:950–956

    Article  Google Scholar 

  62. Neely WC (1984) Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng 26:59–65

    Article  Google Scholar 

  63. Diedericks D, Rensburg EV, del Prado García-Aparicio M, Görgens JF (2011) Enhancing the enzymatic digestibility of sugarcane bagasse through the application of an ionic liquid in combination with an acid catalyst. Biotechnol Prog. doi:10.1002/btpr.711

    Google Scholar 

  64. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A: Gen 373:1–56

    Article  Google Scholar 

  65. Liu CF, Sun RC, Zhang AP, Ren JL (2007) Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohydr Polym 68:17–25

    Article  Google Scholar 

  66. Ma S, Xue XL, Yu SJ, Wang ZH (2012) High-intensity ultrasound irradiated modification of sugarcane bagasse cellulose in an ionic liquid. Ind Crops Prod 35:135–139

    Article  Google Scholar 

  67. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    Article  Google Scholar 

  68. Chen S, Zhang X, Singh D, Yu H, Yang X (2010) Review: biological pretreatment of lignocellulosics—potential, progress and challenges. Biofuels 1:177–199

    Article  Google Scholar 

  69. Costa SM, Gonçalves AR, Esposito E (2005) Ceriporiopsis subvermispora used in delignification of sugarcane bagasse prior to soda/anthraquinone pulping. Appl Biochem Biotechnol 121–124:695–706

    Google Scholar 

  70. Chandel AK, Calvet G, Giese EC, Reis J, Silva SS (2011) Statistical optimization of dual acid-base pretreatment of sugarcane bagasse improves the enzymatic hydrolysis into fermentable sugars. Workshop on second generation of bioethanol: enzymatic hydrolysis. Campinas Brazil, 24–25 Nov

    Google Scholar 

  71. Chandel AK, Antunes FAF, Calvet G, Finotti SB, Marino VF, Silva SS (2011) Hydrolysis of sugarcane bagasse with oxalic acid catalyzed process for ethanol production by Pichia stipitis NRRL-Y-7124. 1st Brazilian bioenergy science and technology (BBEST) conference.. Campus da Jordao, Brazil, 14–18 Aug 2011

    Google Scholar 

  72. Eggeman T, Elander TR (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 8:2019–2025

    Article  Google Scholar 

  73. Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML (2010) Key-drivers influencing the commercialization of ethanol based biorefineries. J Commer Biotechnol 16:239–257

    Article  Google Scholar 

  74. Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to the BIOEN/FAPESP, CNPq and CAPES, Brazil for the financial assistance. We are also thankful to Dr. Om V. Singh from University of Pittsburgh, Bradford for the critical reading of chapter and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj K. Chandel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandel, A.K., Giese, E.C., Antunes, F.A., Santos Oliveira, I., da Silva, S. (2013). Pretreatment of Sugarcane Bagasse and Leaves: Unlocking the Treasury of “Green Currency”. In: Fang, Z. (eds) Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32735-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32735-3_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32734-6

  • Online ISBN: 978-3-642-32735-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics