Skip to main content

Improvements of Biomass Gasification Process by Plasma Technologies

  • Chapter
  • First Online:
Pretreatment Techniques for Biofuels and Biorefineries

Abstract

The chapter is dedicated to a promising method of biomass treatment—plasma gasification. Increased temperatures and energy supply allows significantly increase the range of wastes and other carbonaceous materials which could be efficiently processed. Features of plasma usage in updraft and downdraft biomass gasification are described. Several promising renewable energy sources (wood, energy crops, wastes of livestock, and poultry industry) are examined for the usage in downdraft plasma gasification. The correlation of key parameters of biomass plasma gasification was studied in thermodynamic equilibrium approach along with syngas usage for liquid fuel production. Institute for Electrophysics and Electric Power RAS experimental installation is described. Its primary component is a downdraft plasma gasifier for processing of biomass and wastes. Its technical characteristics and functionality are described. A brief survey of existing pilot and industrial projects is given. Methods of energy supply into plasma chemical reactor are described. The review of powerful plasma torches for industrial application is represented. Experimental procedures and test results on biomass gasification by air-plasma are presented as well as the comparison with the calculated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juanjuan D, Wenping Z (2011) The analysis to the influence of carbon dioxide emissions in different countries. Energy Procedia 5:2426–2431. doi:10.1016/j.egypro.2011.03.417

    Article  Google Scholar 

  2. Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys Res Lett 25:2715–2718

    Article  Google Scholar 

  3. Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Change 2:2–4. doi:10.1038/nclimate1332

    Google Scholar 

  4. IEA (2011) Key World Energy Statistics 2011. http://www.iea.org/textbase/nppdf/free/2011/key_world_energy_stats.pdf. Accessed 14 Feb 2012

  5. Whitney G, Behrens CE, Glover C (2011) U.S. fossil fuel resources: terminology, reporting, and summary. CRS report for Congress. http://assets.opencrs.com/rpts/R40872_20110325.pdf. Accessed 14 Feb 2012

  6. Li M (2011) Peak energy and the limits to global economic growth. University of Utah. Annual Report 2011. July 2011. http://www.econ.utah.edu/~mli/Annual%20Reports/Annual%20Report%202011.pdf. Accessed 14 Feb 2012

  7. Hook M, Sivertsson A, Aleklett K (2010) Validity of the fossil fuel production outlooks in the IPCC Emission scenarios. Nat Resour Res 19:63–81. doi:.1007/s11053-010-9113-1

    Article  Google Scholar 

  8. Ladanai S, Vinterbäck J (2009) Global potential of sustainable biomass for energy. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  9. Hassan R, Scholes R, Ash N (2005) Ecosystems and human well-being: current state and trends. Island press, Washington DC

    Google Scholar 

  10. Dietenberger MA, Green DW, Kretschmann DE et al (1999) Wood handbook—wood as an engineering material. General Technical Report FPL–GTR–113. U.S. Department of Agriculture, Madison, WI

    Google Scholar 

  11. Green DW, Perry RH (2007) Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill, USA

    Google Scholar 

  12. History of Biofuels (2010) http://biofuel.org.uk/history-of-biofuels.html. Accessed 16 Feb 2012

  13. Barney JN, DiTomaso JM (2010) Bioclimatic predictions of habitat suitability for the biofuel switchgrass in North America under current and future climate scenarios. Biomass Bioenergy 34:124–133. doi:10.1016/j.biombioe.2009.10.009

    Article  Google Scholar 

  14. Keoleian GA, Volk TA (2005) Renewable energy from Willow Biomass Crops: life cycle energy, environmental and economic performance. Crit Rev Plant Sci 24:385–406. doi:10.1080/07352680500316334

    Article  Google Scholar 

  15. Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480. doi:10.1016/j.apenergy.2011.01.059

    Article  Google Scholar 

  16. Bacovsky D, Mabee W, Worgetter M (2010) How close are second-generation biofuels? Biofuels, Bioprod Biorefin 4:249–252. doi:10.1002/bbb.222

    Article  Google Scholar 

  17. Ribaudo M, Gollehon N, Aillery M (2003) Manure management for water quality: costs to animal feeding operations of applying manure nutrients to land. Agricultural Economic Report 824. U.S. Department of Agriculture. http://www.ers.usda.gov/publications/aer824/aer824.pdf. Accessed 14 Feb 2012

  18. Kärkkäinen L, Matala J, Härkönen K, Kellomäki S, Nuutinen T (2008) Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland. Biomass Bioenergy 32:934–943. doi:10.1016/j.biombioe. Accessed 01 Jan 2008

    Article  Google Scholar 

  19. Yoshioka T (2011) Study on the feasibility of a harvesting, transporting, and chipping system for forest biomass resources in Japan. Agri-Biosci Monographs 1:1–60. doi:10.5047/agbm.2011.00101.0001

    Article  Google Scholar 

  20. Reijnders L (2010) Transport biofuel yields from food and lignocellulosic C4 crops. Biomass Bioenergy 34:152–155. doi:10.1016/j.biombioe.2009.10.004

    Article  Google Scholar 

  21. Duffy MD, Nanhou VY (2001) Costs of producing switchgrass for biomass in Southern Iowa. Iowa State University Extension, Pm 1866. http://iowaswitchgrassdocs/pdf/Costs%20of%20Switchgrass.pdf. Accessed 14 Feb 2012

  22. Weiland NT, Means NC, Morreale BD (2012) Product distributions from isothermal co-pyrolysis of coal and biomass. Fuel 94:563–570. doi:10.1016/j.fuel.2011.10.046

    Article  Google Scholar 

  23. Ghaly  AE, Al hattab M (2012) An innovative farm scale biogas/composting facility for a sustainable medium size dairy farm. Am J AgricBiol Sci 7:1–14. doi:10.3844/ajabssp.2012.1.16

    Google Scholar 

  24. MacDonald JM, O’Donoghue EJ, McBride WD, Nehring RF, Sandretto CL, Mosheim R (2007) Profits, costs, and the changing structure of dairy farming. U.S. Department of Agriculture. http://www.ers.usda.gov/publications/err47/err47.pdf. Accessed 14 Feb 2012

  25. Santoianni DA, Bingham MF, Woodard DM, Kinnell JC (2008) Power from animal waste—economic, technical, and regulatory landscape in the United States. Journal of Energy and Environment Conference 2:Paper #01

    Google Scholar 

  26. Hadrich JC, Wolf CA, Black JR, Harsh SB (2008) Incorporating environmentally compliant manure nutrient disposal costs into least-cost livestock ration formulation. J AgricAppl Econ 40:287–300

    Google Scholar 

  27. WA Government (2004) Environmental code of practice for poultry farms in western Australia. The Department of Environment, Australia

    Google Scholar 

  28. Roeper H, Khan S, Koerner I, Stegmann R (2005) Low-tech options for chicken manure treatment and application possibilities in agriculture. Proceedings Sardinia 2005, 10th International Waste Management and Landfill Symposium. Environmental Sanitary Engineering Centre, Italy

    Google Scholar 

  29. Giuntoli J, de Jong W, Arvelakis S, Spliethoff H, Verkooijen AHM (2009) Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis: dry distiller’s grains with solubles (DDGS) and chicken manure. J Anal Appl Pyrolysis 85:301–312. doi:10.1016/j.jaap.2008.12.007

    Article  Google Scholar 

  30. Mkhabela TS (2004) Substitution of fertiliser with poultry manure: is this economically viable? Agrekon 43:347–356. doi:10.1080/03031853.2004.9523654

    Article  Google Scholar 

  31. Popov VE, Bratsev AN, Kuznetsov VA, Shtengel SV, Ufimtsev AA (2011) Plasma gasification of waste as a method of energy saving. J Phys: Conf Ser 275:012015. doi:10.1088/1742–6596/275/1/012015

    Article  Google Scholar 

  32. Zhang Q, Dor L, Fenigshtein D, Yang W, Blasiak W (2012) Gasification of municipal solid waste in the plasma gasification melting process. Appl Energy 90:106–112. doi:10.1016/j.apenergy.2011.01.041

    Article  Google Scholar 

  33. Fourcault A, Marias F, Michon U (2010) Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch. Biomass Bioenergy 34:1363–1374. doi:10.1016/j.biombioe.2010.04.018

    Article  Google Scholar 

  34. Nair SA, Pemen AJM, Yana K et al (2003) Tar removal from biomass-derived fuel gas by pulsed corona discharges. Fuel Process Technol 84:161–173. doi:10.1016/S0378-3820(03)00053-5

    Article  Google Scholar 

  35. Brattsev AN, Kuznetsov VA, Popov VE, Ufimtsev AA (2011) Arc gasification of biomass: example of wood residue. High Temp 49:244–248. doi:10.1134/S0018151X11010020

    Article  Google Scholar 

  36. Moustakas K, Xydis G, Malamis S, Haralambous K-J, Loizidou M (2008) Analysis of results from the operation of a pilot plasma gasification/vitrification unit for optimizing its performance. J Hazard Mater 151:473–480. doi:10.1016/j.jhazmat.2007.06.006

    Article  Google Scholar 

  37. Bassily AM (2008) Enhancing the efficiency and power of the triple-pressure reheat combined cycle by means of gas reheat, gas recuperation, and reduction of the irreversibility in the heat recovery steam generator. Appl Energy 85:1141–1162. doi:10.1016/j.apenergy.2008.02.017

    Article  Google Scholar 

  38. U.S. Department of Agriculture (2004) Wood biomass for energy. http://www.fpl.fs.fed.us/documnts/techline/wood-biomass-for-energy.pdf. Accessed 16 Feb 2012

  39. Rutberg PG, Bratsev AN, Kuznetsov VA, Popov VE, Ufimtsev AA, Shtengel’ SV (2011) On efficiency of plasma gasification of wood residues. Biomass Bioenergy 35:495–504. doi:10.1016/j.biombioe.2010.09.010

    Article  Google Scholar 

  40. Kobayashi Y, Ando Y, Kabata T, Nishiura M, Tomida K, Matake N (2011) Extremely high-efficiency thermal power system-solid oxide fuel cell (SOFC) Triple combined-cycle system. Mitsubishi Heavy Ind Tech Rev 48:9–15

    Google Scholar 

  41. Rutberg PG, Kuznetsov VA, Bratsev AN, Popov VE, Shtengel’ SV, Ufimtsev AA (2011) Use of carbon dioxide in the chemical synthesis technologies, plasma gasification and carbon production. IOP Conference Series: Mater Sci Eng19:012003. doi:10.1088/1757–899X/19/1/012003

    Google Scholar 

  42. Bratsev AN, Kuznetsov VA, Popov VE, Ufimtsev AA, Shtengel SV (2009) Estimation of perspectivity of steam-plasma methane conversion. High Temp Mater Processes: Int J 13:241–246. doi:10.1615/HighTempMatProc.v13.i2.120

    Article  Google Scholar 

  43. Bratsev AN, Glezin IL, Kovshechnikov VB, Kumkova II, Kuznetsov VA, Popov VE, Shtengel SV, Ufimtsev AA (2007) Experimental research of air gasification of waste. The first results. Proceedings of 28th International Conference on Phenomena in Ionized Gases. Institute of Plasma Physics AS CR, Prague. pp 1848–1851

    Google Scholar 

  44. Kuznetsov VA, Bratsev AN, Kovshechnikov VB, Kumkova II, Popov VE, Shtengel SV, Ufimtsev AA (2007) Distinctive features of biomass gasification using ac plasma generators working on air. IEEE Pulsed Power Conference. Digest of technical papers 1976–2007. Omnipress, Madison, WI, USA, pp 1223–1226

    Google Scholar 

  45. Bratsev AN, Kuznetsov VA, Popov VE, Rutberg AP, Ufimtsev AA, Shtengel SV (2009) Experimental development of methods on plasma gasification of coal as the basis for creation of liquid fuel technology. High Temp Mater Processes: Int J 13:147–154. doi:10.1615/HighTempMatProc.v13.i2.30

    Article  Google Scholar 

  46. Bratsev AN, Kumkova II, Kuznetsov VA, Popov VE, Shtengel’ SV, Ufimtsev AA (2011) Air plasma gasification of RDF as a prospective method for reduction of carbon dioxide emission. IOP Conf Ser: Mater Sci Eng19:012004. doi:10.1088/1757–899X/19/1/012004

    Google Scholar 

  47. Mondal P, Dang GS, Garg MO (2011) Syngas production through gasification and cleanup for downstream applications—recent developments. Fuel Process Technol 92:1395–1410. doi:10.1016/j.fuproc.2011.03.021

    Article  Google Scholar 

  48. Anis S, Zainal ZA (2011) Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: Rev Renew Sust Energ Rev 15:2355–2377. doi:10.1016/j.rser.2011.02.018

    Article  Google Scholar 

  49. Bahng M-K, Mukarakate C, Robichaud DJ, Nimlos MR (2009) Current technologies for analysis of biomass thermochemical processing: Rev Anal Chim Acta 651:117–138. doi:10.1016/j.aca.2009.08.016

    Article  Google Scholar 

  50. Gomez E, Rani DA, Cheeseman CR, Deegan D, Wise M, Boccaccini AR (2009) Thermal plasma technology for the treatment of wastes: A critical review. J Hazard Mater 161:614–626. doi:10.1016/j.jhazmat.2008.04.017

    Article  Google Scholar 

  51. Yang L, Wang H, Wang H, Wang D, Wang Y (2011) Solid waste plasma disposal plant. J Electrostat 69:411–413. doi:10.1016/j.elstat.2011.05.007

    Article  Google Scholar 

  52. Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sust Energ Rev 14:2841–2851. doi:10.1016/j.rser.2010.07.030

    Article  Google Scholar 

  53. Morrin S, Lettieri P, Chapman C, Mazzei L (2012) Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions. Waste Management 32:676–684. doi:10.1016/j.wasman.2011.08.020

    Article  Google Scholar 

  54. Loha C, Chatterjee PK, Chattopadhyay H (2011) Performance of fluidized bed steam gasification of biomass – Modeling and experiment. Energ Convers Manage 52:1583–1588. doi:10.1016/j.enconman.2010.11.003

    Article  Google Scholar 

  55. Minutillo M, Perna A, Di Bona D (2009) Modelling and performance analysis of an integrated plasma gasification combined cycle (IPGCC) power plant. Energ Convers Manage 50:2837–2842. doi:10.1016/j.enconman.2009.07.002

    Article  Google Scholar 

  56. Karamarkovic R, Karamarkovic V (2010) Energy and exergy analysis of biomass gasification at different temperatures. Energy 35:537–549. doi:10.1016/j.energy.2009.10.022

    Article  Google Scholar 

  57. Atashi H, Siami F, Mirzaei AA, Sarkari M (2010) Kinetic study of Fischer--Tropsch process on titania-supported cobalt--manganese catalyst. J Ind Eng Chem 16:952–961. doi:10.1016/j.jiec.2010.04.005

    Article  Google Scholar 

  58. van Steen E, Claeys M (2008) Fischer-Tropsch catalysts for the biomass-to-liquid process. Chem Eng Technol 2008:655–666. doi: 10.1002/ceat.200800067

    Google Scholar 

  59. Amouroux J, Siffert P (2011) Carbon dioxide: a raw material and a future chemical fuel for a sustainable energy industry. IOP Conference Series: Mater Sci Eng 19:012001. doi:10.1088/1757–899X/19/1/012001

    Google Scholar 

  60. Machrafi H, Cavadias S, Amouroux J (2011) CO2 reforming of methane: valorizing CO2 by means of dielectric barrier discharge. IOP Conference Series: Mater Sci Eng 19:012006. doi:10.1088/1757–899X/19/1/012006

    Google Scholar 

  61. Amouroux J, Cavadias S, Doubla A (2011) Carbon dioxide reduction by non-equilibrium electrocatalysis plasma reactor. IOP Conference Series: Mater Sci Eng 19:012005. doi:10.1088/1757–899X/19/1/012005

    Google Scholar 

  62. Alter NRG. http://www.alternrg.com/. Accessed 21 Feb 2012

  63. InEnTec. http://www.inentec.com/. Accessed 21 Feb 2012

  64. Advanced Plasma Power. http://www.advancedplasmapower.com/. Accessed 21 Feb 2012

  65. Plasco Energy Group. http://www.plascoenergygroup.com/. Accessed 21 Feb 2012

  66. PyroGenesis Canada Inc. http://www.pyrogenesis.com/. Accessed 21 Feb 2012

  67. Rutberg PG (2003) Plasma pyrolysis of toxic waste. Plasma physics and controlled fusion 45:957–969. doi:10.1088/0741–3335/45/6/309

    Article  Google Scholar 

  68. Rutberg PG, Safronov AA, Goryachev VL (1998) Strong-current arc discharge of alternating current. IEEE T Plasma Sci 26:1297–1306. doi:10.1109/27.725162

    Article  Google Scholar 

  69. Electric arc heater develops very high temperatures (1960) Iron Steel Eng 37(11):149–150

    Google Scholar 

  70. Maniero DA, Kienast PF, Hirayama C (1966) Electric arc heaters for high-temperature chemical processing. Westinghouse engineer 26(3):66–72

    Google Scholar 

  71. Harry JE (1970) A power frequency plasma torch for industrial process heating. IEEE T Ind Gen Appl IGA-6:36–42. doi:10.1109/TIGA.1970.4181126

    Google Scholar 

  72. Iwata M, Shibuya M (1999) Effect on transferred ac arc plasma stability of increasing ambient temperature and superimposing pulse at current zero point. J Phys D: Appl Phys 32:2410–2415. doi:10.1088/0022–3727/32/18/312

    Article  Google Scholar 

  73. Fey MG (1977) U.S. Patent 4013867

    Google Scholar 

  74. Wolf CB, Fey MG (1972) U.S. Patent 3705975

    Google Scholar 

  75. Reed JF, Peterson CW, Curry WH (1975) Electric heater development and performance data for a Mach 14 wind tunnel. J Spacecraft Rockets 12:308–313

    Article  Google Scholar 

  76. Spongberg RM (1964) U.S. Patent 3140421

    Google Scholar 

  77. Reid JW (1960) U.S. Patent 2964678

    Google Scholar 

  78. Feldmeyer E, Schallus E (1960) U.S. Patent 2923811

    Google Scholar 

  79. Roots WK, Kadhim MA (1969) Measuring the electrothermal efficiency of a 50-Hz plasma torch. IEEE T Instrum Meas 18:150–156. doi:10.1109/TIM.1969.4313791

    Article  Google Scholar 

  80. Rutberg PG (1970) Three-phase plasma torch. Some problems of investigation of gas-discharge plasma and creation of strong-current magnetic fields. Nauka, Leningrad (in Russian)

    Google Scholar 

  81. Rutberg PG, Safronov AV, Popov SD, Surov AV, Nakonechny GV (2005) Multiphase stutionary plasma generators working on oxidizing media. Plasma Phys Contr F 47:1681–1696. doi:10.1088/0741-3335/47/10/006

    Article  Google Scholar 

  82. Jenšta J, Takana H, Nishiyama H et al (2011) Integrated parametric study of a hybrid-stabilized argon--water arc under subsonic, transonic and supersonic plasma flow regimes. J Phys D: Appl Phys 44:435204. doi:10.1088/0022-3727/44/43/435204

    Google Scholar 

  83. Eschenbach RC, Bryson DA, Sargent HB, Sarlitto RJ, Troue HH (1964) Characteristics of high voltage vortex-stabilized arc heaters. IEEE T Nucl Sci 11:41–46. doi:10.1109/TNS.1964.4323330

    Article  Google Scholar 

  84. Paintes JH, Saeffer JF (1976) Performance and scaling characteristics of a Huels-type arc heater operating on hydrogen, helium or air. AIAA-14

    Google Scholar 

  85. Boatright WB, Sabol AP, Sebacher DI, Pinckney SZ, Guy RW (1976) Langley facility for tests at Mach 7 of subscale, hydrogen-burning, airframe-integratable, scramjet models. AIAA-11

    Google Scholar 

  86. Painter JH (1977) Hybrid arc air heater performance. AIAA-111

    Google Scholar 

  87. Westinghouse Plasma – Plasma torches. http://www.westinghouse-plasma.com/technology/plasma-torches. Accessed 5 Mar 2012

  88. NRG FOCUS – October 2011 issue. http://alternrg.com/sites/default/files/content/all/NRG%20Focus_Sept%202011_FN_LR_LK.pdf?phpMyAdmin=1,25SWTwdk48LH, ZtfJ1P24LAkc. Accessed 5 Mar 2012

  89. Hacala A, Michon U (2009) Innovative industrial plasma torch for converting biomass into high purity syngas. International Plasma Chemistry Society 19. Conference proceedings. Bochum, Germany. 39. P2.14.04

    Google Scholar 

  90. Rutberg P (2009) Physics and technology of high-current discharges in dense gas media and flows. Nova Science Publishers, New York

    Google Scholar 

  91. Bratsev AN, Popov VE, Rutberg AF, Shtengel’ SV (2006) A facility for plasma gasification of waste of various types. High Temp 44:823–828. doi:.1007/s10740-006-0099-7

    Article  Google Scholar 

  92. Reed TB, Das A (1998) Handbook of biomass downdraft gasifier engine systems. Solar Research Institute, Golden CO

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G. Rutberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rutberg, P.G., Kuznetsov, V.A., Popov, V.E., Bratsev, A.N., Popov, S.D., Surov, A.V. (2013). Improvements of Biomass Gasification Process by Plasma Technologies. In: Fang, Z. (eds) Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32735-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32735-3_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32734-6

  • Online ISBN: 978-3-642-32735-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics