Skip to main content

Channel Design and Optimization of Active Transport Molecular Communication

  • Conference paper
Book cover Bio-Inspired Models of Networks, Information, and Computing Systems (BIONETICS 2011)

Abstract

In this paper, a guideline is provided for design and optimization of the shape of active transport molecular communication channels. In particular rectangular channels are considered and it is shown that for channels employing a single microtubule as the carrier of the information particles, the smaller the perimeter of the channel, the higher the channel capacity. Furthermore, it is shown that when channels with similar perimeters are considered, square-like channels achieve higher channel capacity for small values of time per channel use, while narrower channels achieve higher information rates for larger values of time per channel use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hiyama, S., Moritani, Y.: Molecular communication: harnessing biochemical materials to engineer biomimetic communication systems. Nano Communication Networks 1(1), 20–30 (2010)

    Article  Google Scholar 

  2. Farsad, N., Eckford, A.W., Hiyama, S., Moritani, Y.: Information rates of active propagation in microchannel molecular communication. In: Proc. of the 5th International ICST Conference on Bio-Inspired Models of Network, Information, and Computing Systems, Boston, MA, p. 7 (2010)

    Google Scholar 

  3. Farsad, N., Eckford, A.W., Hiyama, S., Moritani, Y.: A simple mathematical model for information rate of active transport molecular communication. In: Proc. IEEE INFOCOM Workshops, Shanghai, P. R. China, pp. 473–478 (2011)

    Google Scholar 

  4. Farsad, N., Eckford, A.W., Hiyama, S., Moritani, Y.: Quick system design of vesicle-based active transport molecular communication by using a simple transport model. Nano Communication Networks (2011), doi:10.1016/j.nancom.2011.07.003

    Google Scholar 

  5. Eckford, A.W.: Nanoscale communication with brownian motion. In: Proc. of the 41st Annual Conference on Information Sciences and Systems, Baltimore, MD, pp. 160–165 (2007)

    Google Scholar 

  6. Atakan, B., Akan, O.: An information theoretical approach for molecular communication. In: Proc. of the 2nd International Conference on Bio-Inspired Models of Network, Information and Computing Systems, Budapest, Hungary, pp. 33–40 (2007)

    Google Scholar 

  7. Moore, M.J., Suda, T., Oiwa, K.: Molecular communication: modeling noise effects on information rate. IEEE Transactions on NanoBioscience 8(2), 169–180 (2009)

    Article  Google Scholar 

  8. Eckford, A.W.: Timing Information Rates for Active Transport Molecular Communication. In: Schmid, A., Goel, S., Wang, W., Beiu, V., Carrara, S. (eds.) Nano-Net 2009. LNICST, vol. 20, pp. 24–28. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Pierobon, M., Akyildiz, I.F.: A physical end-to-end model for molecular communication in nanonetworks. IEEE Journal on Selected Areas in Communications 28(4), 602–611 (2010)

    Article  Google Scholar 

  10. Mahfuz, M.U., Makrakis, D., Mouftah, H.T.: On the characterization of binary concentration-encoded molecular communication in nanonetworks. Nano Communication Networks 1(4), 289–300 (2010)

    Article  Google Scholar 

  11. Eckford, A.W., Farsad, N., Hiyama, S., Moritani, Y.: Microchannel molecular communication with nanoscale carriers: Brownian motion versus active transport. In: Proc. of the IEEE International Conference on Nanotechnology, Seoul, South Korea, pp. 854–858 (2010)

    Google Scholar 

  12. Nitta, T., Tanahashi, A., Hirano, M., Hess, H.: Simulating molecular shuttle movements: Towards computer-aided design of nanoscale transport systems. Lab on a Chip 6(7), 881–885 (2006)

    Article  Google Scholar 

  13. Nitta, T., Tanahashi, A., Hirano, M.: In silico design and testing of guiding tracks for molecular shuttles powered by kinesin motors. Lab on a Chip 10(11), 1447–1453 (2010)

    Article  Google Scholar 

  14. Hiyama, S., Gojo, R., Shima, T., Takeuchi, S., Sutoh, K.: Biomolecular-motor-based nano- or microscale particle translocations on DNA microarrays. Nano Letters 9(6), 2407–2413 (2009)

    Article  Google Scholar 

  15. Hiyama, S., Moritani, Y., Gojo, R., Takeuchi, S., Sutoh, K.: Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip. Lab on a Chip 10(20), 2741–2748 (2010)

    Article  Google Scholar 

  16. Cobo, L.C., Akyildiz, I.F.: Bacteria-based communication in nanonetworks. Nano Communication Networks 1(4), 244–256 (2010)

    Article  Google Scholar 

  17. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience (2006)

    Google Scholar 

  18. Blahut, R.: Computation of channel capacity and rate-distortion functions. IEEE Transactions on Information Theory 18(4), 460–473 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. Arimoto, S.: An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Transactions on Information Theory 18(1), 14–20 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Farsad, N., Eckford, A.W., Hiyama, S. (2012). Channel Design and Optimization of Active Transport Molecular Communication. In: Hart, E., Timmis, J., Mitchell, P., Nakamo, T., Dabiri, F. (eds) Bio-Inspired Models of Networks, Information, and Computing Systems. BIONETICS 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32711-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32711-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32710-0

  • Online ISBN: 978-3-642-32711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics