Hybrid Architecture to Predict Trends at Stock Exchange of São Paulo: Markowitz Model and a Multilayer Perceptron

  • Paulo Henrique Kaupa
  • Renato José Sassi
  • Edinalva Batista Ramalho
Conference paper

DOI: 10.1007/978-3-642-32639-4_43

Volume 7435 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Kaupa P.H., Sassi R.J., Ramalho E.B. (2012) Hybrid Architecture to Predict Trends at Stock Exchange of São Paulo: Markowitz Model and a Multilayer Perceptron. In: Yin H., Costa J.A.F., Barreto G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg

Abstract

The main challenge in Stock Exchange is choose stocks with uptrend in order to compose a profitable stock portfolio and also ensure security of investment, since the risk in stock investment is considered high. One tool that can help investors to identify the stocks behavior and help to select the right stocks becomes essential. The application of intelligent techniques, especially Artificial Neural Networks to forecast trends in stock prices generated good results. Thus, in this paper was created hybrid architecture, composed by the Markowitz Model and an Artificial Neural Network Multilayer Perceptron, in order to support the investor. For the experiments, the information of the ten most traded stocks on Stock Exchange of São Paulo was extracted. The hybrid architecture is given as follows: Processing Stock Information in Markowitz Model then result is presented as one of input variables of neural network. For analyze the results, was applied an investment simulator, where the investment return obtained point to the use of hybrid architecture in investments.

Keywords

Hybrid architecture Multilayer Perceptron Markowitz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paulo Henrique Kaupa
    • 1
  • Renato José Sassi
    • 1
  • Edinalva Batista Ramalho
    • 2
  1. 1.Industrial Engineering Post Graduation ProgramNove de Julho UniversitySão PauloBrazil
  2. 2.Fundação Getúlio Vargas CEAFE Master in Financial EconomicsSão PauloBrazil