Skip to main content

Learning and Generalization in Random Automata Networks

  • Conference paper
Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2010)

Abstract

It has been shown [7,6] that feedforward Boolean networks can learn to perform specific simple tasks and generalize well if only a subset of the learning examples is provided for learning. Here, we extend this body of work and show experimentally that random Boolean networks (RBNs), where both the interconnections and the Boolean transfer functions are chosen at random initially, can be evolved by using a state-topology evolution to solve simple tasks. We measure the learning and generalization performance, investigate the influence of the average node connectivity K, the system size N, and introduce a new measure that allows to better describe the network’s learning and generalization behavior. Our results show that networks with higher average connectivity K (supercritical) achieve higher memorization and partial generalization. However, near critical connectivity, the networks show a higher perfect generalization on the even-odd task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksander, I.: Random logic nets: Stability and adaptation. International Journal of Man-Machine Studies 5, 115–131 (1973)

    Article  Google Scholar 

  2. Aleksander, I.: From Wisard to Magnus: A family of weightless virtual neural machines. In: Austin, J. (ed.) RAM-Based Neural Networks. Progress in Neural Processing, vol. 9. World Scientific (1998)

    Google Scholar 

  3. Aleksander, I., Thomas, W.V., Bowden, P.A.: WISARD: A radical step foward in image recognition. Sensor Review 4, 120–124 (1984)

    Article  Google Scholar 

  4. Amari, S.I.: Characteristics of randomly connected threshold-element networks and network systems. Proceedings of the IEEE 59(1), 35–47 (1971)

    Article  MathSciNet  Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  6. Carnevali, P., Patarnello, S.: Exhaustive thermodynamical analysis of Boolean learning networks. Europhysics Letters 4(10), 1199–1204 (1987)

    Article  Google Scholar 

  7. Van den Broeck, C., Kawai, R.: Learning in feedforward Boolean networks. Physical Review A 42(10), 6210–6218 (1990)

    Article  Google Scholar 

  8. Gershenson, C.: Classification of random Boolean networks. In: Standish, R.K., Bedau, M.A., Abbass, H.A. (eds.) Artificial Life VIII. Proceedings of the Eight International Conference on Artificial Life, pp. 1–8. MIT Press, Cambridge, MA (2003)

    Google Scholar 

  9. Kauffman, S.A.: Metabolic stability and epigenesis in randomly connected genetic nets. Journal of Theoretical Biology 22, 437–467 (1968)

    Article  Google Scholar 

  10. Kauffman, S.A.: Emergent properties in random complex automata. Physica D 10(1-2), 145–156 (1984)

    Article  MathSciNet  Google Scholar 

  11. Kauffman, S.A.: The Origins of Order: Self–Organization and Selection in Evolution. Oxford University Press, New York (1993)

    Google Scholar 

  12. Lawson, J., Wolpert, D.H.: Adaptive programming of unconventional nano-architectures. Journal of Computational and Theoretical Nanoscience 3, 272–279 (2006)

    Google Scholar 

  13. Lizier, J., Prokopenko, M., Zomaya, A.: The information dynamics of phase transitions in random boolean networks. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 374–381. MIT Press, Cambridge (2008)

    Google Scholar 

  14. Martland, D.: Auto-associative pattern storage using synchronous boolean networks. In: Proceedings of the First IEEE International Conference on Neural Networks, San Diego, CA, vol. III, pp. 355–366 (1987)

    Google Scholar 

  15. Martland, D.: Behaviour of autonomous (synchronous) boolean networks. In: Proceedings of the First IEEE International Conference on Neural Networks, San Diego, CA, vol. II, pp. 243–250 (1987)

    Google Scholar 

  16. Patarnello, A., Carnevali, P.: Learning networks of neurons with Boolean logic. Europhysics Letters 4(4), 503–508 (1987)

    Article  Google Scholar 

  17. Patarnello, S., Carnevali, P.: Learning capabilities of boolean networks. In: Aleksander, I. (ed.) Neural Computing Architectures: The Design of Brain-Like Machines, ch. 7, pp. 117–129. North Oxford Academic, London (1989)

    Google Scholar 

  18. Rozonoér, L.I.: Random logical nets I. Automation and Remote Control 5, 773–781 (1969); translation of Avtomatika i Telemekhanika

    Google Scholar 

  19. Selfridge, O.G.: “Pandemonium”: A paradigm for learning. In: Mechanisation of Thought Processes: Proceedings of a Symposium Held at the National Physical Laboratory, pp. 513–526 (1958)

    Google Scholar 

  20. Selfridge, O.G., Neisser, U.: Pattern recognition by machine. Scientific American 203(2), 60–68 (1960)

    Article  Google Scholar 

  21. Teuscher, C.: Turing’s Connectionism. An Investigation of Neural Network Architectures. Springer, London (2002)

    MATH  Google Scholar 

  22. Teuscher, C., Gulbahce, N., Rohlf, T.: Learning and generalization in random Boolean networks. In: Dynamics Days 2007: International Conference on Chaos and Nonlinear Dynamics, Boston, MA, January 3-6 (2007)

    Google Scholar 

  23. Teuscher, C., Gulbahce, N., Rohlf, T.: An assessment of random dynamical network automata for nanoelectronics. International Journal of Nanotechnology and Molecular Computation 1(4), 39–57 (2009)

    Article  Google Scholar 

  24. Tour, J., Van Zandt, W.L., Husband, C.P., Husband, S.M., Wilson, L.S., Franzon, P.D., Nackashi, D.P.: Nanocell logic gates for molecular computing. IEEE Transactions on Nanotechnology 1(2), 100–109 (2002)

    Article  Google Scholar 

  25. Turing, A.M.: Intelligent machinery. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 3–23. Edinburgh University Press, Edinburgh (1969)

    Google Scholar 

  26. Weisbuch, G.: Dynamique des systèmes complexes: Une introduction aux réseaux d’automates. InterEditions, France (1989)

    Google Scholar 

  27. Weisbuch, G.: Complex Systems Dynamics: An Introduction to Automata Networks. Lecture Notes, Santa Fe Institute, Studies in the Sciences of Complexity, vol. 2. Addison-Wesley, Redwood City (1991)

    Google Scholar 

  28. Wittaker, E.T., Robinson, G.: The trapezoidal and parabolic rules. In: The Calculus of Observations: A Treatise on Numerical Mathematics, pp. 156–158. Dover, New York (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Goudarzi, A., Teuscher, C., Gulbahce, N. (2012). Learning and Generalization in Random Automata Networks. In: Suzuki, J., Nakano, T. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32615-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32615-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32614-1

  • Online ISBN: 978-3-642-32615-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics