Skip to main content

Combination of Machine-Learning Algorithms for Fault Prediction in High-Precision Foundries

  • Conference paper
Database and Expert Systems Applications (DEXA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7447))

Included in the following conference series:

Abstract

Foundry is one of the activities that has contributed to evolve the society, however, the manufacturing process is carried out in the same manner as it was many years ago. Therefore, several defects may appear in castings when the production process is already finished. One of the most difficult defect to detect is the microshrinkage: tiny porosities that appear inside the casting. Another important aspect that foundries have to control are the attributes that measure the faculty of the casting to withstand several loads and tensions, also called mechanical properties. Both cases need specialised staff and expensive machines to test the castings and, in the second one, also, destructive inspections that render the casting invalid. The solution is to model the foundry process to apply machine learning techniques to foresee what is the state of the casting before its production. In this paper we extend our previous research and we propose a general method to foresee all the defects via building a meta-classifier combining different methods and without the need for selecting the best algorithm for each defect or available data. Finally, we compare the obtained results showing that the new approach allows us to obtain better results, in terms of accuracy and error rates, for foretelling microshrinkages and the value of mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sertucha, J., Loizaga, A., Suárez, R.: Improvement opportunities for simulation tools. In: Proceedings of the 16th European Conference and Exhibition on Digital Simulation for Virtual Engineering (2006) (invited talk)

    Google Scholar 

  2. Santos, I., Nieves, J., Penya, Y.K., Bringas, P.G.: Optimising Machine-Learning-Based Fault Prediction in Foundry Production. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009, Part II. LNCS, vol. 5518, pp. 554–561. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Santos, I., Nieves, J., Penya, Y.K., Bringas, P.G.: Towards noise and error reduction on foundry data gathering processes. In: Proceedings of the International Symposium on Industrial Electronics, ISIE (2010) (in press)

    Google Scholar 

  4. Nieves, J., Santos, I., Penya, Y.K., Rojas, S., Salazar, M., Bringas, P.G.: Mechanical properties prediction in high-precision foundry production. In: Proceedings of the 7th IEEE International Conference on Industrial Informatics, INDIN 2009, pp. 31–36 (2009)

    Google Scholar 

  5. Nieves, J., Santos, I., Penya, Y.K., Brezo, F., Bringas, P.G.: Enhanced Foundry Production Control. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 213–220. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Yang, J., Zhanga, Y., Zhu, Y.: Intelligent fault diagnosis of rolling element bearing based on svms and fractal dimension. Mechanical Systems and Signal Processing 1, 2012–2024 (2007)

    Article  Google Scholar 

  7. Santos, I., Penya, Y.K., Devesa, J., Bringas, P.G.: N-grams-based file signatures for malware detection. In: Proceedings of the 11th International Conference on Enterprise Information Systems (ICEIS), vol. AIDSS, pp. 317–320 (2009)

    Google Scholar 

  8. Lisboa, P., Taktak, A.: The use of artificial neural networks in decision support in cancer: a systematic review. Neural Networks 19(4), 408–415 (2006)

    Article  MATH  Google Scholar 

  9. Lazaro, A., Serrano, I., Oria, J., de Miguel, C.: Ultrasonic sensing classification of foundry pieces applying neuralnetworks. In: 5th International Workshop on Advanced Motion Control, pp. 653–658 (1998)

    Google Scholar 

  10. Zhang, P., Xu, Z., Du, F.: Optimizing casting parameters of ingot based on neural network and genetic algorithm. In: ICNC 2008: Proceedings of the 2008 Fourth International Conference on Natural Computation, pp. 545–548. IEEE Computer Society, Washington, DC (2008)

    Chapter  Google Scholar 

  11. Perzyk, M., Kochanski, A.: Detection of causes of casting defects assisted by artificial neural networks. Proceedings of the I MECH E Part B Journal of Engineering Manufacture 217 (2003)

    Google Scholar 

  12. Sourmail, T., Bhadeshia, H., MacKay, D.: Neural network model of creep strength of austenitic stainless steels. Materials Science and Technology 18(6), 655–663 (2002)

    Article  Google Scholar 

  13. Santos, I., Nieves, J., Bringas, P.G., Penya, Y.K.: Machine-learning-based defect prediction in high-precision foundry production. In: Becker, L.M. (ed.) Structural Steel and Castings: Shapes and Standards, Properties and Applications, pp. 259–276. Nova Publishers (2010)

    Google Scholar 

  14. Santos, I., Nieves, J., Bringas, P.G.: Enhancing fault prediction on automatic foundry processes. In: World Automation Congress (WAC), pp. 1–6. IEEE (2010)

    Google Scholar 

  15. Santos, I., Nieves, J., Penya, Y.K., Bringas, P.G.: Machine-learning-based mechanical properties prediction in foundry production. In: Proceedings of ICROS-SICE International Joint Conference (ICCAS-SICE), pp. 4536–4541 (2009)

    Google Scholar 

  16. Kalpakjian, S., Schmid, S.: Manufacturing engineering and technology. Pearson Pentice Hall (2005)

    Google Scholar 

  17. Carrasquilla, J.F., Ríos, R.: A fracture mechanics study of nodular iron. Revista de Metalurgía 35(5), 279–291 (1999)

    Article  Google Scholar 

  18. Gonzaga-Cinco, R., Fernández-Carrasquilla, J.: Mecanical properties dependency on chemical composition of spheroidal graphite cast iron. Revista de Metalurgia 42, 91–102 (2006)

    Article  Google Scholar 

  19. Sertucha, J., Suárez, R., Legazpi, J., Gacetabeitia, P.: Influence of moulding conditions and mould characteristics on the contraction defects appearance in ductile iron castings. Revista de Metalurgia 43(2), 188–195 (2007)

    Google Scholar 

  20. Margaria, T.: Inoculation alloy against micro-shrinkage cracking for treating cast iron castings, November 13 (2003); WO Patent WO/2003/093,514

    Google Scholar 

  21. Lung, C.W., March, N.H.: Mechanical Properties of Metals: Atomistic and Fractal Continuum Approaches. World Scientific Pub. Co. Inc. (July 1992)

    Google Scholar 

  22. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience (2004)

    Google Scholar 

  23. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  24. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

    Article  Google Scholar 

  25. Seewald, A.K., Fürnkranz, J.: An Evaluation of Grading Classifiers. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA 2001. LNCS, vol. 2189, pp. 115–124. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  26. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145 (1995)

    Google Scholar 

  27. Wolpert, D.: Stacked generalization. Neural Networks 5(2), 241–259 (1992)

    Article  MathSciNet  Google Scholar 

  28. Garner, S.: Weka: The Waikato environment for knowledge analysis. In: Proceedings of the New Zealand Computer Science Research Students Conference, pp. 57–64 (1995)

    Google Scholar 

  29. Singh, Y., Kaur, A., Malhotra, R.: Comparative analysis of regression and machine learning methods for predicting fault proneness models. International Journal of Computer Applications in Technology 35(2), 183–193 (2009)

    Article  Google Scholar 

  30. Provost, F., Fawcett, T.: Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, pp. 43–48. Amer. Assn. for Artificial (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nieves, J., Santos, I., Bringas, P.G. (2012). Combination of Machine-Learning Algorithms for Fault Prediction in High-Precision Foundries. In: Liddle, S.W., Schewe, KD., Tjoa, A.M., Zhou, X. (eds) Database and Expert Systems Applications. DEXA 2012. Lecture Notes in Computer Science, vol 7447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32597-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32597-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32596-0

  • Online ISBN: 978-3-642-32597-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics