Skip to main content

The Shock Wave and Beyond, A Tribute to Professor Glass

  • Chapter
Professor I. I. Glass: A Tribute and Memorial

Abstract

From 1961 to 1972, they were the high light of the Apollo project. Researchers, who were the same age as the author and interested in high-speed gas dynamics, were aware of the importance of the shock wave research. Shock tubes reproduced atmospheric reentry conditions of the Apollo commander modules and shock tunnels simulated the reentry flights. In the late 1960s, Japanese researchers became interested in space technology and science, which initiated the establishment of the Japan Society for Shock Tube Research. Japan was a newcomer to the international shock tube research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamimoto, G.: Proc. of 8th Int Sym on Shock Tubes. Kyoto (1975)

    Google Scholar 

  2. Honda, M., Takayama, K., Onodera, O., Kohama, Y.: Motion of reflected shock waves in shock tubes. In: Kamimoto, G. (ed.) Modern Developments in Shock Tube Research, Proc. 10th Int. Shock Tube Sym., Kyoto, pp. 320–327 (1975)

    Google Scholar 

  3. Glass, I.I.: Shock Waves and Man. Toronto University Press (1975)

    Google Scholar 

  4. Takayama, K., Glass, I.I., Liu, W.S.: Interactions of shock structure with shock-induced quasi-steady laminar sidewall and flat-plate boundary-layer flows in ionizing argon, shock tubes and waves. In: Lifshitz, A. (ed.) Proc. 12th Int. Sym. on Shock Tubes and Waves, Jerusalem, pp. 232–241 (1980)

    Google Scholar 

  5. Glass, I.I., Heuckroth, L.E.: Low energy spherical underwater explosions. Phys. Fluids 11, 2095–2107 (1968)

    Article  Google Scholar 

  6. Takayama, K., Miyoshi, H., Abe, A.: Shock wave reflection over gas/liquid interface. Rep. Inst. High Speed Mech. Tohoku. Univ. 57, 1–25 (1987)

    Google Scholar 

  7. Ben-Dor, G.: Shock Wave Reflection Phenomena. Springer, New York (1990)

    Google Scholar 

  8. Takayama, K.: Application of double exposure holographic interferometry to shock wave research. In: SPIE Proceedings, vol. 389, pp. 174–180 (1983)

    Google Scholar 

  9. Ben-Dor, G., Takayama, K.: Analytical prediction of the transition from Mach to regular reflection over cylindrical concave wedges. J. Fluid Mech. 158, 365–380 (1985)

    Article  Google Scholar 

  10. Coleburn, N.L., Roslund, L.A.: Interaction of spherical shock waves in water. In: Jacobs, S.J., Roberts, R. (eds.) Proc. 5th Sym. on Detonation, Pasadena, pp. 581–588 (1970)

    Google Scholar 

  11. Nagayasu, N.: A study of shock waves generated by micro-explosions and their applications. Doctoral Thesis. Graduate School of Engineering. Tohoku University (2001)

    Google Scholar 

  12. Nagayasu, N., Yamashita, S., Ohtani, K., Takayama: An experimental study of reflection of underwater conical shock waves. In: Krasovskaya, I. (ed.) Book of Abstract 27th Intern. Symp. on Shock Waves, vol. 296. Sanct Petersburg (2009)

    Google Scholar 

  13. Cole, H.: Underwater Explosions. Dover, New York (1965)

    Google Scholar 

  14. Kedrinskii, V.K.: Hydrodynamics of Explosion, Experiments and Models. Springer, Heidelberg (2006)

    Google Scholar 

  15. van Dongen, M. (ed.): Multiphase Flows. I and II. Shock Wave Science and Technology Reference Library, vol. 1. Springer, Heidelberg (2007)

    Google Scholar 

  16. Takayama, K.: Holographic interferometric study of shock wave propagation in two-phase media. In: Groenig, H. (ed.) Proc. 16th Int Symp. on Shock Tubes and Waves, Aachen, pp. 52–61 (1987)

    Google Scholar 

  17. Yamada, K.: A study of shock induced collapse of a gas bubble in liquid. Doctoral Thesis, Graduate School of Engineering. Tohoku University (1993)

    Google Scholar 

  18. Chaussey, C.: Extracorporeal Shock Wave Lithotripsy. Kaerger-Verlag (1982)

    Google Scholar 

  19. Kuwahara, M., Kambe, K., Kurosu, S., Orikasa, S., Takayama, K.: Extracorporeal stone disintegration using chemical explosive pellets as an energy source of underwater shock waves. J. Urology 135, 814–817 (1986)

    Google Scholar 

  20. Takayama, K.: Focusing of Shock Waves. In: Srivastava, R.C., Leutloff, D., Takayama, K., Groenig, H. (eds.) Shock Focusing Effect in Medical Science and Sonoluminescence, ch. 6, vol. 6, pp. 121–149. Springer, Heidelberg (2003)

    Google Scholar 

  21. Takayama, K. (ed.): Shock Wave Handbook. Springer, Tokyo (1995)

    Google Scholar 

  22. Takayama, K., Onodera, O., Obara, T., Kuwahara, M., Kitayama, O.: Application of shock wave focusing to medicine, basis research. Bulltine JSME Ser. B 57, 2285–2292 (1991)

    Article  Google Scholar 

  23. Ikeda, K., Matsuda, M., Tomita, K., Takayama, K.: Application of extracorporeal shock wave on bones: Basic anc clinical study. In: Ball, G.J., Hillier, R., Roberts, G.T. (eds.) Proc. 22nd ISSW, vol. 1, pp. 623–626. Imperial College, London (1999)

    Google Scholar 

  24. Kodama, T., Takayama, K., Nagayasu, N., Uenohara, H., Takahashi, N.: Revascularization therapy for acute cerebral embolism by the impact of a liquid jet generated by the interaction of a gas bubble with an underwater shock wave. In: Paul, A., McIntyre, T. (eds.) Proc. 21st ISSW, Great Keppel, vol. 2, pp. 773–779 (1997)

    Google Scholar 

  25. Tominaga, T., Nakagawa, A., Hirano, T., Sato, J., Kato, K., Hosseini, S.H.R., Takayama, K.: Application of underwater shock wave and laser-induced liquid jet to neurosurgery. Shock Waves 15, 55–67 (2006)

    Article  Google Scholar 

  26. Nakagawa, A., Kumabe, T., Kanamori, M., Saito, R., Hirano, T., Takayama, K., Tominaga, T.: Clinical application of pulsed laser-induced liquid jet: preliminary report in glioma surgery. Neuro Surgery 36, 1005–1010 (2008)

    Google Scholar 

  27. Menezes, V., Takayama, K., Ohki, T., Gopalan, J.: Laser-ablation-assisted micro-particle acceleration fro drug delivery. Appl. Phs. Lett. 87 (2008) 163504-163504-3

    Google Scholar 

  28. Nakada, M., Menezes, V., Kanno, A., Hosseini, S.H.R., Takayama, K.: Shock wave based biolistic device for DMA and drug delivery. Japan Soc. Appl. Phys. 47, 1522–1526 (2008)

    Article  Google Scholar 

  29. Kato, K., Fujimura, M., Nakagawa, A., Saito, A., Ohki, T., Takayama, K., Tominaga, T.: Pressure-dependent effect of shock waves on rat brain: induction of neuronal apoptosis mediated by a caspase-dependent pathway. J. Nerosurgery 106, 667–676 (2007); Kato, K.: Study of threshold and mechanisms of brain cell damages at shock loading. Doctoral Thesis. Graduate School of Medicine. Tohoku University (2006)

    Article  Google Scholar 

  30. Yamamoto, H., Takayama, K., Kondo, M., Shimokawa, H.: Experimental study of shock focusing by small reflector and body tissue damage for medical application: Q-switch Ho:YAG laser shock abrasion catheter. In: Proc. 2010 Japanese Sym. on Shock Waves, pp. 387–390 (2010)

    Google Scholar 

  31. Itaka, S., Takayama, K.: Study of shock reflection and focusing from a circular concave wall. Bulltine JSME Ser. B 61, 122–127 (1996)

    Google Scholar 

  32. Milton, B.E.: Mach reflection using ray-shock theory. AIAA J. 13, 1531–1532 (1974)

    Article  Google Scholar 

  33. Inoue, O., Takahashi, N., Takayama, K.: Shock wave focusing in a log-spiral duct. AIAA J. 31, 1150–1152 (1993)

    Article  Google Scholar 

  34. Ikui, T., Matsuo, M., Yamamoto, Y.: A study of a quick opening valve for shock tube operations. Bulltin JSME Ser. B 42, 2127–2132 (1976)

    Article  Google Scholar 

  35. Oguchi, H., Funabiki, K., Sato, S.: A new type of shock valve and its characteristic performance. Univ Tokyo, ISAS RN 20 (1976)

    Google Scholar 

  36. Yang, J.-M.: Experimental and analytical study of behavior of weak shock waves. Doctoral Thesis, Graduate School of Engineering. Tohoku University (1994)

    Google Scholar 

  37. Babinsky, H., Yang, J.-M., Takayama, K.: Animated visualization of shock wave flow fields for dynamic comparison between experiment and computational prediction. In: Proc SPIE, vol. 2410, pp. 101–107 (1995)

    Google Scholar 

  38. Stanyukovich, K.F.: Unsteady Motion of Continuous Media, pp. 490–540. Pergamon Press (1960)

    Google Scholar 

  39. Perry, R.W., Kantrowitz, A.: The production and stability of converging sock waves. J. Appl. Phys. 22, 878–886 (1951)

    Article  Google Scholar 

  40. Hoshizawa, Y.: A study of convergence of cylindrical shock waves. Master Thesis. Graduate of Engineering Tohoku University (1981)

    Google Scholar 

  41. Guderley, G.: Starke kugekige und zylindrishe Verdichtungs stosse in der NAehe des Kugemitteepunktes bzw der Zylinderachse. Luftfakrtforschung 19, 302–312 (1942)

    MathSciNet  Google Scholar 

  42. Watanabe, M., Takayama, K.: Stability of converging cylindrical shock waves. Shock Waves 1, 149–160 (1991); Watanabe, M.: A study of stability of converging cylindrical shock waves. Doctoral Thesis. Graduate School of Eng., Tohoku University (1995)

    Google Scholar 

  43. Hosseini, S.H.R., Takayama, K.: Experimental study of toroidal shcokw ave focusing in a compact vertical annular diaphragm-less shock tube. Shock Waves 20, 1–7 (2010)

    Article  Google Scholar 

  44. Terao, K.: Detonation wave focusing. In: Takayama, K. (ed.) Proc. Int. Workshop on Shock Wave Focusing, pp. 123–140 (1989)

    Google Scholar 

  45. Meguro, T.: A study of three-dimensional reflection of shock waves. Doctoral Thesis. Graduate School of Eng., Tohoku University (1997)

    Google Scholar 

  46. Henderson, L.F., Crutchfield, W.Y., Virgona, R.J.: The effects of heat conductivity and viscosity of argon on shock waves diffracting over rigid. J. Fluid Mech. 331, 1–49 (1997)

    Article  Google Scholar 

  47. Henderson, L.F., Takayama, K., Crutchfield, W.Y., Itabashi, S.: The persistence of regular reflection during strong shock diffraction over rigid ramp. J. Fluid Mech. 431, 273–296 (2001)

    Article  MATH  Google Scholar 

  48. Sun, M., Takayama, K.: An artificial upstream flux vector splitting scheme for Euler equations. J. Comp. Phys. 189, 305–329 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kosugi, T., Mitobe, H., Takayama, K., Kitade, M.: Shock wave reflections over rigid wedges and cones. In: Ball, G.J., Hillier, R., Roberts, G.T. (eds.) Proc. 22nd ISSW, Imperial College, London, vol. 2, pp. 1279–1284 (1999)

    Google Scholar 

  50. Kitade, M., Kosugi, T., Yada, K., Takayama, K.: Shock wave reflection over concave and convex wedges. In: Proc. SPIE, 24th Int Congress of high-Speed Photography and Photonics, Sendai (2000) 4183-644-651

    Google Scholar 

  51. Takayama, K., Sasaki, M.: Effects of radius of curvature and initial angle on shock transition over a concave or convex wall. Rep. Inst. High Speed Mech., Tohoku Univ. 46, 1–30 (1983)

    Google Scholar 

  52. Matsumura, S., Itoh, K., Onodera, O., Takayama, K.: Coalescence of compression waves into shock waves in automobile engine exhaust pipes. Bulletin of JSME, Ser. B 56, 200–205 (1988)

    Google Scholar 

  53. Sasoh, A., Matsuoka, K., Nakashio, K., Timofeev, E.V., Takayama, K., Voinovich, P., Saito, T., Hirano, S., Ono, S., Makino, Y.: Attenuation of weak shock waves along pseudo-perforated walls. Shock Waves 8, 149–159 (1998)

    Article  Google Scholar 

  54. Ohtomo, F., Ohtani, K., Takayama, K.: Attenuation of shock waves propagating over arrayed baffle plates. Shock Waves 14, 379–390 (2005)

    Article  Google Scholar 

  55. Saito, T., Menezes, V., Kuribayashi, T., Sun, M., Gopalan, J., Talayama, K.: Unsteady convective surface heat flux measurements on cylinder for CFD code validation. Shock Waves 13, 327–337 (2004)

    Article  Google Scholar 

  56. Kuribayashi, T., Ohtani, K., Takayama, K., Menezes, V., Sun, M., Saito, T.: Heat flux measurement over a cone in a shock tube flow. Shock Waves 16, 275–285 (2007)

    Article  Google Scholar 

  57. Meguro, T., Takayama, K., Onodera, O.: Three-dimensional shock wave reflection over a corner of two intersecting wedges. Shock Waves 7, 101–121 (1997)

    Article  Google Scholar 

  58. Timofeev, E., Voinovich, P., Saito, T., Takayama, K.: Three-dimensional unsteady reflection of a plane shock wave from an inclined cylinder. In: Milton, B., Saito, T., Sun, M. (eds.) Proc. Inter. Sym. Interdisciplinary Shock Wave Res. ISISW Matsushima March, pp. 498–517 (2004)

    Google Scholar 

  59. Numata, D., Ohtani, D., Takayama, K., Diffuse, K.: holographic interferometric observation of shock wave reflection from a skewed wedge. Shock Waves 19, 103–112 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takayama, K. (2013). The Shock Wave and Beyond, A Tribute to Professor Glass. In: Takayama, K., Igra, O. (eds) Professor I. I. Glass: A Tribute and Memorial. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32489-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32489-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32488-8

  • Online ISBN: 978-3-642-32489-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics