Skip to main content

Some Single- and Multiobjective Optimization Techniques

  • Chapter
Unsupervised Classification

Abstract

Several metaheuristic techniques optimizing both single and multiple objectives are described in detail in this chapter. Mathematical formulations of the single and multiobjective optimization problems are provided. Different concepts related to multiobjective optimization are described in detail. Two popular metaheuristics, namely genetic algorithms and simulated annealing, are elaborately discussed. Several existing multiobjective evolutionary techniques (MOEAs) are described in brief. Apart from MOEAs there exist several multiobjective simulated annealing (MOSA)-based techniques. These are also described in this chapter. Finally a detailed description of a multiobjective simulated annealing-based technique, AMOSA, is provided, along with an analysis of its time complexity. Comparative results with some existing MOEA and MOSA techniques are presented for several benchmark test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Multiobjective simulated annealing. http://www.dcs.ex.ac.uk/people/kismith/mosa/results/tec/

  2. Bandyopadhyay, S., Maulik, U., Pakhira, M.K.: Clustering using simulated annealing with probabilistic redistribution. Int. J. Pattern Recognit. Artif. Intell. 15(2), 269–285 (2001)

    Article  Google Scholar 

  3. Bandyopadhyay, S., Pal, S.K.: Classification and Learning Using Genetic Algorithms Applications in Bioinformatics and Web Intelligence. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  4. Bandyopadhyay, S., Pal, S.K., Aruna, B.: Multi-objective GAs, quantitative indices and pattern classification. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(5), 2088–2099 (2004)

    Article  Google Scholar 

  5. Bandyopadhyay, S., Pal, S.K., Murthy, C.A.: Simulated annealing based pattern classification. Inf. Sci. 109(1–4), 165–184 (1998)

    Article  MathSciNet  Google Scholar 

  6. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing based multi-objective optimization algorithm: AMOSA. IEEE Trans. Evol. Comput. 12(3), 269–283 (2008)

    Article  Google Scholar 

  7. Bhandarkar, S.M., Zhang, H.: Image segmentation using evolutionary computation. IEEE Trans. Evol. Comput. 3(1), 1–21 (1999)

    Article  Google Scholar 

  8. Caves, R., Quegan, S., White, R.: Quantitative comparison of the performance of SAR segmentation algorithms. IEEE Trans. Image Process. 7(11), 1534–1546 (1998)

    Article  Google Scholar 

  9. Chipperfield, A., Whidborne, J., Fleming, P.: Evolutionary algorithms and simulated annealing for MCDM. In: Multicriteria Decision Making – Advances in MCDM Models, Algorithms, Theory and Applications, pp. 16.1–16.32. Kluwer Academic, Boston (1999)

    Google Scholar 

  10. Coello Coello, C.A.: A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl. Inf. Syst. 1(3), 129–156 (1999)

    Google Scholar 

  11. Coello Coello, C.A., Veldhuizen, D.V., Lamont, G.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic, Boston (2002)

    MATH  Google Scholar 

  12. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based selection in evolutionary multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 283–290. Morgan Kaufmann, San Francisco (2001). citeseer.ist.psu.edu/corne01pesaii.html

    Google Scholar 

  13. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto-envelope based selection algorithm for multiobjective optimisation. In: Proceedings of the Parallel Problem Solving from Nature – PPSN VI, Springer Lecture Notes in Computer Science, pp. 869–878 (2000)

    Google Scholar 

  14. Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing – A metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-Criteria Decis. Anal. 7(1), 34–47 (1998)

    Article  MATH  Google Scholar 

  15. Das, I., Dennis, J.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Optim. 14(1), 63–69 (1997)

    Article  Google Scholar 

  16. Davis, L. (ed.): Genetic Algorithms and Simulated Annealing. Morgan Kaufmann, Los Altos (1987)

    MATH  Google Scholar 

  17. Davis, L. (ed.): Handbook of Genetic Algorithms. Van Nostrand-Reinhold, New York (1991)

    Google Scholar 

  18. Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evol. Comput. 7(3), 205–230 (1999)

    Article  Google Scholar 

  19. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, England (2001)

    MATH  Google Scholar 

  20. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  21. DeJong, K.: Learning with genetic algorithms: An overview. Mach. Learn. 3(2-3), 121–138 (1988)

    Article  Google Scholar 

  22. Engrand, P.: A multi-objective approach based on simulated annealing and its application to nuclear fuel management. In: 5th International Conference on Nuclear Engineering, Nice, France, pp. 416–423 (1997)

    Google Scholar 

  23. Erickson, M., Mayer, A., Horn, J.: Multi-objective optimal design of groundwater remediation systems: Application of the niched Pareto genetic algorithm (NPGA). Adv. Water Resour. 25(1), 51–65 (2002)

    Article  Google Scholar 

  24. Fieldsend, J., Everson, R., Singh, S.: Using unconstrained elite archives for multi-objective optimisation. IEEE Trans. Evol. Comput. 7(3), 305–323 (2003)

    Article  Google Scholar 

  25. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3(1), 1–16 (1995)

    Article  Google Scholar 

  26. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  27. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  28. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16, 122–128 (1986)

    Article  Google Scholar 

  29. Hapke, M., Jaszkiewicz, A., Slowinski, R.: Pareto simulated annealing for fuzzy multi-objective combinatorial optimization. J. Heuristics 6(3), 329–345 (2000)

    Article  MATH  Google Scholar 

  30. Hughes, E.J.: Evolutionary many-objective optimization: Many once or one many. In: Proceedings of 2005 Congress on Evolutionary Computation, Edinburgh, Scotland, UK, September 2–5, 2005, pp. 222–227 (2005)

    Chapter  Google Scholar 

  31. Ingber, L.: Very fast simulated re-annealing. Math. Comput. Model. 12(8), 967–973 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ishibuchi, H., Doi, T., Nojima, Y.: Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms. In: Parallel Problem Solving from Nature IX (PPSN-IX), vol. 4193, pp. 493–502 (2006)

    Chapter  Google Scholar 

  33. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 28(3), 392–403 (1998)

    Article  Google Scholar 

  34. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 6(6), 721–741 (1984)

    Google Scholar 

  35. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  36. Jaszkiewicz, A.: Comparison of local search-based metaheuristics on the multiple objective knapsack problem. Found. Comput. Dec. Sci. 26(1), 99–120 (2001)

    MathSciNet  Google Scholar 

  37. Kirkpatrick, S.: Optimization by simulated annealing: Quantitative studies. J. Stat. Phys. 34(5/6), 975–986 (1984)

    Article  MathSciNet  Google Scholar 

  38. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kirpatrick, S., Vecchi, M.P.: Global wiring by simulated annealing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. CAD-2(4), 215–222 (1983)

    Google Scholar 

  40. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  41. Konak, A., Coit, D., Smith, A.: Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006). http://linkinghub.elsevier.com/retrieve/pii/S0951832005002012

    Article  Google Scholar 

  42. Kwanghoon, S., Jung, K.H., Alexander, W.E.: A mean field annealing approach to robust corner detection. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 28(1), 82–90 (1998)

    Article  Google Scholar 

  43. Maulik, U., Bandyopadhyay, S., Trinder, J.: SAFE: An efficient feature extraction technique. J. Knowl. Inf. Syst. 3(3), 374–387 (2001)

    Article  MATH  Google Scholar 

  44. Maulik, U., Bandyopadhyay, S., Mukhopadhyay, A.: Multiobjective Genetic Algorithms for Clustering – Applications in Data Mining and Bioinformatics. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  45. Metropolis, N., Rosenbluth, A.W., Rosenbloth, M.N., Teller, A.H., Teller, E.: Equation of state calculation by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  46. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1992)

    MATH  Google Scholar 

  47. Nam, D., Park, C.H.: Pareto-based cost simulated annealing for multiobjective optimization. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02), vol. 2, pp. 522–526. Nanyang Technical University, Orchid Country Club, Singapore (2002)

    Google Scholar 

  48. Nam, D.K., Park, C.H.: Multiobjective simulated annealing: A comparative study to evolutionary algorithms. Int. J. Fuzzy Syst. 2(2), 87–97 (2000)

    Google Scholar 

  49. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (2007)

    Google Scholar 

  50. Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 5(1), 96–101 (1994)

    Article  Google Scholar 

  51. Schaffer, J.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and Their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100 (1985)

    Google Scholar 

  52. Schott, J.R.: Fault tolerant design using single and multi-criteria genetic algorithms. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Boston, MA (1995)

    Google Scholar 

  53. Serafini, P.: Simulated annealing for multiple objective optimization problems. In: Proceedings of the Tenth International Conference on Multiple Criteria Decision Making: Expand and Enrich the Domains of Thinking and Application, vol. 1, pp. 283–292. Springer, Berlin (1994)

    Google Scholar 

  54. Smith, K.I., Everson, R.M., Fieldsend, J.E.: Dominance measures for multi-objective simulated annealing. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation (CEC’04), pp. 23–30 (2004)

    Google Scholar 

  55. Smith, K.I., Everson, R.M., Fieldsend, J.E., Murphy, C., Misra, R.: Dominance-based multi-objective simulated annealing. IEEE Trans. Evol. Comput. 12(3), 323–342 (2008)

    Article  Google Scholar 

  56. Sontag, E., Sussman, H.: Image restoration and segmentation using the annealing algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. CAD-2(4), 215–222 (1983)

    Google Scholar 

  57. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  58. Suman, B.: Study of self-stopping PDMOSA and performance measure in multiobjective optimization. Comput. Chem. Eng. 29(5), 1131–1147 (2005)

    Article  Google Scholar 

  59. Suman, B.: Multiobjective simulated annealing – A metaheuristic technique for multiobjective optimization of a constrained problem. Found. Comput. Dec. Sci. 27(3), 171–191 (2002)

    Google Scholar 

  60. Suman, B.: Simulated annealing based multiobjective algorithm and their application for system reliability. Eng. Optim. 35(4), 391–416 (2003)

    Article  Google Scholar 

  61. Suman, B.: Study of simulated annealing based multiobjective algorithm for multiobjective optimization of a constrained problem. Comput. Chem. Eng. 28(9), 1849–1871 (2004)

    Article  Google Scholar 

  62. Suman, B., Kumar, P.: A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 57(10), 1143–1160 (2006)

    Article  MATH  Google Scholar 

  63. Suppapitnarm, A., Seffen, K., Parks, G., Clarkson, P.: A simulated annealing algorithm for multiobjective optimization. Eng. Optim. 33(1), 59–85 (2000)

    Article  Google Scholar 

  64. Szu, H.H., Hartley, R.L.: Fast simulated annealing. Phys. Lett. A 122(3–4), 157–162 (1987)

    Article  Google Scholar 

  65. Toussaint, G.T.: Pattern recognition and geometrical complexity. In: Proc. Fifth International Conf. on Pattern Recognition, Miami Beach, December 1980, pp. 1324–1347 (1980)

    Google Scholar 

  66. Tuyttens, D., Teghem, J., El-Sherbeny, N.: A particular multiobjective vehicle routing problem solved by simulated annealing. In: Metaheuristics for Multiobjective Optimization, vol. 535, 133–152 (2003)

    Chapter  Google Scholar 

  67. Ulungu, E.L., Teghaem, J., Fortemps, P., Tuyttens, D.: MOSA method: A tool for solving multiobjective combinatorial decision problems. J. Multi-Criteria Decis. Anal. 8(4), 221–236 (1999)

    Article  MATH  Google Scholar 

  68. Yao, X.: A new simulated annealing algorithm. Int. J. Comput. Math. 56, 161–168 (1995)

    Article  MATH  Google Scholar 

  69. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  70. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Tech. Rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)

    Google Scholar 

  71. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bandyopadhyay, S., Saha, S. (2013). Some Single- and Multiobjective Optimization Techniques. In: Unsupervised Classification. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32451-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32451-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32450-5

  • Online ISBN: 978-3-642-32451-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics