Skip to main content

A Plausible Texture Enlargement and Editing Compound Markovian Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7252))

Abstract

This paper describes high visual quality compound Markov random field texture model capable to realistically model multispectral bidirectional texture function, which is currently the most advanced representation of visual properties of surface materials. The presented compound Markov random field model combines a non-parametric control random field with analytically solvable wide-sense Markov representation for single regions and thus allows very efficient non-iterative parameters estimation as well as the compound random field synthesis. The compound Markov random field model is utilized for realistic texture compression, enlargement, and powerful automatic texture editing. Edited textures maintain their original layout but adopt anticipated local characteristics from one or several parent target textures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashikhmin, M.: Synthesizing natural textures. Tech. rep. (2001)

    Google Scholar 

  2. Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., Werman, M.: Texture mixing and texture movie synthesis using statistical learning. IEEE Transactions on Visualization and Computer Graphics 7(2), 120–135 (2001)

    Article  Google Scholar 

  3. Brooks, S., Cardle, M., Dodgson, N.A.: Enhanced texture editing using self similarity. In: VVG, pp. 231–238 (2003)

    Google Scholar 

  4. Brooks, S., Dodgson, N.A.: Self-similarity based texture editing. ACM Trans. Graph. 21(3), 653–656 (2002)

    Article  Google Scholar 

  5. Brooks, S., Dodgson, N.A.: Integrating procedural textures with replicated image editing. In: Spencer, S.N. (ed.) Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia 2005, Dunedin, New Zealand, November 29-December 2, pp. 277–280. ACM (2005)

    Google Scholar 

  6. Filip, J., Haindl, M.: Bidirectional texture function modeling: A state of the art survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(11), 1921–1940 (2009)

    Article  Google Scholar 

  7. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions and bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Int. 6(11), 721–741 (1984)

    Article  MATH  Google Scholar 

  8. Haindl, M.: Texture synthesis. CWI Quarterly 4(4), 305–331 (1991)

    MATH  Google Scholar 

  9. Haindl, M., Hatka, M.: BTF Roller. In: Chantler, M., Drbohlav, O. (eds.) Proceedings of the 4th International Workshop on Texture Analysis, Texture 2005, pp. 89–94. IEEE, Los Alamitos (2005)

    Google Scholar 

  10. Haindl, M., Hatka, M.: A roller - fast sampling-based texture synthesis algorithm. In: Skala, V. (ed.) Proceedings of the 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 93–96. UNION Agency - Science Press, Plzen (2005)

    Google Scholar 

  11. Haindl, M., Havlíček, V.: A multiscale colour texture model. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proceedings of the 16th International Conference on Pattern Recognition, pp. 255–258. IEEE Computer Society, Los Alamitos (2002), http://dx.doi.org/10.1109/ICPR.2002.1044676

    Google Scholar 

  12. Haindl, M., Havlíček, V.: A compound mrf texture model. In: Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, pp. 1792–1795. IEEE Computer Society CPS, Los Alamitos (2010), http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.442

    Chapter  Google Scholar 

  13. Haindl, M., Šimberová, S.: A Multispectral Image Line Reconstruction Method. In: Theory & Applications of Image Analysis, pp. 306–315. World Scientific Publishing Co., Singapore (1992)

    Google Scholar 

  14. Haindl, M., Filip, J.: Extreme compression and modeling of bidirectional texture function. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(10), 1859–1865 (2007)

    Article  Google Scholar 

  15. Haindl, M., Havlícek, V.: A Multiresolution Causal Colour Texture Model. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 114–122. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Haindl, M., Havlíček, V.: Texture Editing Using Frequency Swap Strategy. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1146–1153. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. ACM Trans. Graph., 327–340 (2001)

    Google Scholar 

  18. Jeng, F.C., Woods, J.W.: Compound gauss-markov random fields for image estimation. IEEE Transactions on Signal Processing 39(3), 683–697 (1991)

    Article  Google Scholar 

  19. Khan, E.A., Reinhard, E., Fleming, R.W., Bülthoff, H.H.: Image-based material editing. ACM Trans. Graph. 25(3), 654–663 (2006), http://doi.acm.org/10.1145/1141911.1141937

    Article  Google Scholar 

  20. Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics (TOG) 20(3), 127–150 (2001)

    Article  Google Scholar 

  21. Molina, R., Mateos, J., Katsaggelos, A., Vega, M.: Bayesian multichannel image restoration using compound gauss-markov random fields. IEEE Trans. Image Proc. 12(12), 1642–1654 (2003)

    Article  Google Scholar 

  22. Müller, G., Meseth, J., Sattler, M., Sarlette, R., Klein, R.: Acquisition, synthesis and rendering of bidirectional texture functions. In: Eurographics 2004. STAR - State of The Art Report, pp. 69–94. Eurographics Association (2004)

    Google Scholar 

  23. Potts, R., Domb, C.: Some generalized order-disorder transformations. In: Proceedings of the Cambridge Philosophical Society, vol. 48, p. 106 (1952)

    Google Scholar 

  24. Wang, X., Wang, L., Liu, L., Hu, S., Guo, B.: Interactive modeling of tree bark. In: Proc. 11th Pacific Conf. on Computer Graphics and Applications, pp. 83–90. IEEE (2003)

    Google Scholar 

  25. Wiens, A.L., Ross, B.J.: Gentropy: evolving 2d textures. Computers & Graphics 26, 75–88 (2002)

    Article  Google Scholar 

  26. Wu, F.: The Potts model. Reviews of modern physics 54(1), 235–268 (1982)

    Article  MathSciNet  Google Scholar 

  27. Wu, J., Chung, A.C.S.: A segmentation model using compound markov random fields based on a boundary model. IEEE Trans. Image Processing 16(1), 241–252 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haindl, M., Havlíček, V. (2012). A Plausible Texture Enlargement and Editing Compound Markovian Model. In: Salerno, E., Çetin, A.E., Salvetti, O. (eds) Computational Intelligence for Multimedia Understanding. MUSCLE 2011. Lecture Notes in Computer Science, vol 7252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32436-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32436-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32435-2

  • Online ISBN: 978-3-642-32436-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics