Skip to main content

An Improved Algorithm for Packing T-Paths in Inner Eulerian Networks

  • Conference paper
  • 1065 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7434))

Abstract

A digraph G = (V,E) with a distinguished set T ⊆ V of terminals is called inner Eulerian if for each v ∈ V − T the numbers of arcs entering and leaving v are equal. By a T-path we mean a simple directed path connecting distinct terminals with all intermediate nodes in V − T. This paper concerns the problem of finding a maximum T-path packing, i.e. a maximum collection of arc-disjoint T-paths.

A min-max relation for this problem was established by Lomonosov. The capacitated version was studied by Ibaraki, Karzanov, and Nagamochi, who came up with a strongly-polynomial algorithm of complexity O(φ(V,E) ·logT + V 2 E) (hereinafter φ(n,m) denotes the complexity of a max-flow computation in a network with n nodes and m arcs).

For unit capacities, the latter algorithm takes O(φ(V,E) ·logT + VE) time, which is unsatisfactory since a max-flow can be found in o(VE) time. For this case, we present an improved method that runs in O(φ(V,E) ·logT + E logV) time. Thus plugging in the max-flow algorithm of Dinic, we reduce the overall complexity from O(VE) to O( min (V 2/3 E, E 3/2) ·logT).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babenko, M.A., Karzanov, A.V.: Free multiflows in bidirected and skew-symmetric graphs. Discrete Applied Mathematics 155, 1715–1730 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cherkassky, B.V.: A solution of a problem on multicommodity flows in a network. Ekonomika i Matematicheskie Metody 13(1), 143–151 (1977) (in Russian)

    MathSciNet  Google Scholar 

  3. Dinic, E.A.: Algorithm for solution of a problem of maximum flow in networks with power estimation. Dokl. Akad. Nauk. SSSR 194, 754–757 (in Russian) (translated in Soviet Math. Dokl. 111, 277–279)

    Google Scholar 

  4. Edmonds, J., Johnson, E.L.: Matching: a well-solved class of integer linear programs. In: Guy, R., Hanani, H., Sauer, N., Schönhein, J. (eds.) Combinatorial Structures and Their Applications, pp. 89–92. Gordon and Breach, NY (1970)

    Google Scholar 

  5. Even, S., Tarjan, R.E.: Network Flow and Testing Graph Connectivity. SIAM Journal on Computing 4, 507–518 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton Univ. Press, Princeton (1962)

    MATH  Google Scholar 

  7. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoretical Computer Sci. 10, 111–121 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frank, A.: On connectivity properties of Eulerian digraphs. Ann. Discrete Math. 41, 179–194 (1989)

    Article  Google Scholar 

  9. Goldberg, A.V., Karzanov, A.V.: Path problems in skew-symmetric graphs. Combinatorica 16, 129–174 (1996)

    Article  MathSciNet  Google Scholar 

  10. Goldberg, A.V., Karzanov, A.V.: Maximum skew-symmetric flows and matchings. Mathematical Programming 100(3), 537–568 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. In: Proc. 38th IEEE Symposium Foundations of Computer Science (1997); adn Journal of the ACM 45, 783–797 (1998)

    Google Scholar 

  12. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. J. ACM 35, 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ibaraki, T., Karzanov, A.V., Nagamochi, H.: A fast algorithm for finding a maximum free multiflow in an inner Eulerian network and some generalizations. Combinatorica 18(1), 61–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karger, D.R.: Random sampling in cut, flow, and network design problems. Mathematics of Operations Research (1998)

    Google Scholar 

  15. Karger, D.R.: Better random sampling algorithms for flows in undirected graphs. In: Proc. 9th Annual ACM+SIAM Symposium on Discrete Algorithms, pp. 490–499 (1998)

    Google Scholar 

  16. Karger, D.R., Levine, M.S.: Finding Maximum flows in undirected graphs seems easier than bipartite matching. In: Proc. 30th Annual ACM Symposium on Theory of Computing, pp. 69–78 (1997)

    Google Scholar 

  17. Karzanov, A.V.: O nakhozhdenii maksimalnogo potoka v setyakh spetsialnogo vida i nekotorykh prilozheniyakh. In: Matematicheskie Voprosy Upravleniya Proizvodstvom, vol. 5. University Press (1973) (in Russian)

    Google Scholar 

  18. Karzanov, A.V.: Combinatorial methods to solve cut-dependent problems on multiflows. In: Combinatorial Methods for Flow Problems, Inst. for System Studies, Moscow, vol. (3), pp. 6–69 (1979) (in Russian)

    Google Scholar 

  19. Karzanov, A.V.: Fast algorithms for solving two known problems on undirected multicommodity flows. In: Combinatorial Methods for Flow Problems, Inst. for System Studies, Moscow, vol. (3), pp. 96–103 (1979) (in Russian)

    Google Scholar 

  20. Kupershtokh, V.L.: A generalization of Ford-Fulkerson theorem to multiterminal networks. Kibernetika 7(3), 87–93 (1971) (in Russian) (Translated in Cybernetics 7(3) 494-502)

    Google Scholar 

  21. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and Winston, NY (1976)

    MATH  Google Scholar 

  22. Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math. Akad. Sci. Hung. 28, 129–138 (1976)

    Article  MATH  Google Scholar 

  23. Lovász, L.: Matroid matching and some applications. J. Combinatorial Theory, Ser. B 28, 208–236 (1980)

    Article  MATH  Google Scholar 

  24. Mader, W.: Über die Maximalzahl kantendisjunkter A-Wege. Archiv der Mathematik (Basel) 30, 325–336 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schrijver, A.: Combinatorial Optimization. Springer (2003)

    Google Scholar 

  26. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tutte, W.T.: Antisymmetrical digraphs. Canadian J. Math. 19, 1101–1117 (1967)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babenko, M.A., Salikhov, K., Artamonov, S. (2012). An Improved Algorithm for Packing T-Paths in Inner Eulerian Networks. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32241-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32240-2

  • Online ISBN: 978-3-642-32241-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics