Skip to main content

Photoinduced Generation of Hydroxyl Radical in Natural Waters

  • Chapter
  • First Online:
Photobiogeochemistry of Organic Matter

Abstract

Hydroxyl radical (HO) is a short-lived free radical, and it is the most potent oxidizing transient among the reactive oxygen species. It is an effective, nonselective and strong oxidant that is ubiquitously formed in natural sunlit surface waters (rivers, lakes and seawater and so on), rain, dew, cloud, fog, snow, aerosol, and in all living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele-Oeschger D, Oeschger R, Theede H (1994) Biochemical adaptations of Nereis diversicolor (Polychaeta) to temporarily increased hydrogen peroxide levels in intertidal sandflats. Mar Ecol Prog Ser 106:101–110

    Article  CAS  Google Scholar 

  • al Housari F, Vione D, Chiron S, Barbati S (2010) Reactive photoinduced species in estuarine waters Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes. Photochem Photobiol Sci 9:78–86

    Article  CAS  Google Scholar 

  • Aldrich AP, van Berg den CMG, Thies H, Nickus U (2001) The redox speciation of iron in two lakes. Mar Freshw Res 52:885–890

    Article  CAS  Google Scholar 

  • Alegria AE, Ferrer A, Sepulveda E (1997) Photochemistry of water-soluble quinones production of a water-derived spin adduct. Photochem Photobiol 66:436–442

    Article  CAS  Google Scholar 

  • Allen JM, Lucas S, Allen SK (1996) Formation of hydroxyl radical in illuminated surface waters contaminated with acid mine drainage. Environ Sci Technol 15:107–113

    CAS  Google Scholar 

  • Anastasio C, Jordan AL (2004) Photoformation of hydroxyl radical and hydrogen peroxide in aerosol particles from Alert, Nunavut: implications for aerosol and snowpack chemistry in the Arctic. Atmos Environ 38:1153–1166

    Article  CAS  Google Scholar 

  • Anastasio C, Newberg JT (2007) Sources and sinks of hydroxyl radical in sea-salt particles. J Geophys Res 112:D10306. doi:101029/2006JD008061

    Article  CAS  Google Scholar 

  • Anastasio C, Galbavy ES, Hutterli MA, Burkhart JF, Friel DK (2007) Photoformation of hydroxyl radical on snow grains at Summit Greenland. Atmos Environ 41:5110–5121

    Article  CAS  Google Scholar 

  • Arakaki T, Faust BC (1998) Sources, sinks, and mechanisms of hydroxyl radical (OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: the role of the Fe(r) (r = II, III) photochemical cycle. J Geophys Res 103(D3):3487–3504

    Google Scholar 

  • Arakaki T, Miyake T, Shibata M, Sakugawa H (1998) Measurement of photolytically formed hydroxyl radical in rain and dew waters. Nippon Kagaku Kaishi 9:619–625

    Article  Google Scholar 

  • Arakaki T, Miyake T, Hirakawa T, Sakugawa H (1999a) pH dependent photoformation of hydroxyl radical and absorbance of aqueous-phase N(III) (HNO2 and NO2-). Environ Sci Technol 33:2561–2565

    Article  CAS  Google Scholar 

  • Arakaki T, Miyake T, Shibata M, Sakugawa H (1999b) Photochemical formation and scavenging of hydroxyl radical in rain and dew waters. Nippon Kagaku Kaishi 5:335–340 (in Japanese)

    Google Scholar 

  • Arslan I, Barcioglu A, Tuhkanen T (1999) Oxidative treatment of simulated dyehouse effluent by UV and near-UV light assisted Fenton’s reagent. Chemosphere 39:2767–2783

    Article  CAS  Google Scholar 

  • Arslan I, Balcioglu IA, Bahnemann DW (2000) Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dyes Pigm 47:207–218

    Article  CAS  Google Scholar 

  • Assel M, Laenen R, Laubereau A (1998) Ultrafast electron trapping in an aqueous NaCl-solution. Chem Phys Lett 289:267–274

    Article  CAS  Google Scholar 

  • Balmer ME, Sulzberger B (1999) Atrazine degradation in irradiated iron/oxalate system: effects of pH and oxalate. Environ Sci Technol 33:2418–2424

    Article  CAS  Google Scholar 

  • Barb WG, Boxendale JH, George P, Hargrove KR (1951) Reactions of ferrous and ferric ions with hydrogen peroxide, part II The ferric ion reaction. Trans Faraday Soc 47:591–616

    Article  CAS  Google Scholar 

  • Barbeni M, Minero C, Pelizzetti E (1987) Chemical degradation of chlorophenols with Fenton’s reagent. Chemosphere 16:2225–2237

    Article  CAS  Google Scholar 

  • Bard AJ (1979) Photoelectro chemistry and heterogeneous photocatalysis at semiconductors. J Photochem 10:59–75

    Article  CAS  Google Scholar 

  • Baxendale JH, Wilson JA (1956) The photolysis of hydrogen peroxide at high light intensities. Trans Faraday Soc 53:344–356

    Article  Google Scholar 

  • Benson SW (1960) The foundation of chemical kinetics Ch 15. McGraw-Hill, New York

    Google Scholar 

  • Berger P, Leitner N Karpel Vel, Doré M, Legube B (1999) Ozone and hydroxyl radicals induced oxidation of glycine. Water Res 33:433–441

    Article  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  CAS  Google Scholar 

  • Bertilsson S, Tranvik LJ (1998) Photolytically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr 43:885–895

    Article  CAS  Google Scholar 

  • Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO2/O2∙− radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100

    Article  CAS  Google Scholar 

  • Bissett DL, Chatterjee R, Hannon DP (1991) Chronic ultraviolet radiation-induced increase in skin iron and the photoprotective effects of topically applied iron chelators. Photochem Photobiol 54:215–223

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  Google Scholar 

  • Blough NV (1988) Electron paramagnetic resonance measurements of photochemical radical production in humic substances: 1 Effects of O2 and charge on radical scavenging by nitroxides. Environ Sci Technol 22:77–82

    Article  CAS  Google Scholar 

  • Blough NV, Zepp RG (1995) Reactive oxygen species in natural waters. In: Foote CS, Valentine JS (eds) Active oxygen in chemistry. Blackie Academic and Professional, New York, pp 280–333

    Google Scholar 

  • Bossmann SH, Oliveros E, Gob S, Siegwart S, Dahlen EP, Payawan L, Straub M, Worner M, Braun AM (1998) New evidence against hydroxyl radicals as reactive intermediates in the thermal and photolytically enhanced Fenton reactions. J Phys Chem A 102:5542–5550

    Article  CAS  Google Scholar 

  • Bourdat A-G, Douki T, Frelon S, Gasparutto D, Cadet J (2000) Tandem base lesions are generated by hydroxyl radical within isolated DNA in aerated aqueous solution. J Am Chem Soc 122:4549–4556

    Article  CAS  Google Scholar 

  • Brezonik PL, Fulkerson-Brekken J (1998) Nitrate-induced photolysis in natural waters: controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents. Environ Sci Technol 32:3004–3010

    Article  CAS  Google Scholar 

  • Brigante M, Charbouillot T, Vione D, Mailhot G (2010a) Photochemistry of 1-nitronaphthalene: a potential source of singlet oxygen and radical species in atmospheric waters. J Phys Chem A 114:2830–2836

    Article  CAS  Google Scholar 

  • Brigante M, Charbouillot T, Vione D, Mailhot G (2010b) Photochemistry of 1-nitronaphthalene: a potential source of singlet oxygen and radical species in atmospheric waters. J Phys Chem A 114:2830–2836

    Article  CAS  Google Scholar 

  • Buettner GR (1987) Activation of oxygen by metal complexes and its relevance to autoxidative processes in living systems. Bioelectochem Bioenerg 18:29–36

    Article  CAS  Google Scholar 

  • Buettner GR (1988) In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J Biochem Biophys Methods 16:27–40

    Article  CAS  Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  CAS  Google Scholar 

  • Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541

    Article  CAS  Google Scholar 

  • Buettner GR, Oberley LW, Leuthauser SWHC (1978) The effect of iron on the distribution of superoxide and hydroxyl radicals as seen by spin trapping and on the superoxide dismutase assay. Photochem Photobiol 28:693–695

    Article  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reaction of hydrated electrons, hydrogen atoms and hydroxyl radicals ( OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  • Cadet J, Delatour T, Douki T, Gasparutto D, Pouget J-P, Ravanat J-L, Sauvaigo S (1999) Hydroxyl radicals and DNA base damage. Mutat Res Fundam Mol Mech Mutagen 424:9–21

    Article  CAS  Google Scholar 

  • Canonica S, Kohn T, Mac M, Real FJ, Wirz J, von Gunten U (2005) Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds. Environ Sci Technol 39:9182–9188

    Google Scholar 

  • Chen R, Pignatello JJ (1997) Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ Sci Technol 31:2399–2406

    Article  CAS  Google Scholar 

  • Chen C, Li X, Ma W, Zhao J, Hidaka H, Serpone N (2001) Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism. J Phys Chem B 106:318–324

    Article  CAS  Google Scholar 

  • Chu L, Anastasio C (2003) Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice. J Phys Chem A 107:9594–9602

    Article  CAS  Google Scholar 

  • Chu L, Anastasio C (2005) Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide. J Phys Chem A 109:6264–6271

    Article  CAS  Google Scholar 

  • Cohen G, Heikkila E (1974) The Generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249:2447–2452

    CAS  Google Scholar 

  • Collen J, del Rio MJ, Garcia-Reina G, Pedersen M (1995) Photosynthetic production of hydrogen peroxide by Ulva rigida C Ag (Chlorophyta). Planta 196:225–230

    Article  CAS  Google Scholar 

  • Cooper WJ, Zika RG, Petasne RG, Fischer AM (1988) Sunlight-induced photochemistry of humic substances in natural waters: major reactive species In: Suffett IH, MacCarthy P (eds) Aquatic humic substances. American Chemical Society, Washington, pp 333–362

    Google Scholar 

  • Cooper WJ, Nickelson MG, Waite TD, Kurucz CN (1991) High energy electron beam irradiation: an advanced oxidation process for the treatment of aqueous based organic hazardous wastes. J Environ Sci Health A27:219

    Google Scholar 

  • Cooper WJ, Sawal KL, Hoogland YS, Slifker R, Nickelsen MG, Kurucz CN, Waite TD (1996) Disinfection by-product precursor removal from natural waters using gamma radiation to stimulate an innovative water treatment process. In: Minear RA, Amy GL (eds) Disinfection bi-products in water treatment. CRC Press, Inc, Boca Raton, pp 151–162

    Google Scholar 

  • Croot PL, Laan P, Nishioka J, Strass V, Cisewski B, Boye M, Timmermans KR, Bellerby RG, Goldson L, Nightingale P, de Baar HJW (2005) Spatial and temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment. Mar Chem 95:65–88

    Article  CAS  Google Scholar 

  • Das R, Dutta BK, Maurino V, Vione D, Minero C (2009) Suppression of inhibition of substrate photodegradation by scavengers of hydroxyl radicals: the solvent-cage effect of bromide on nitrate photolysis. Environ Chem Lett 7:337–342

    Article  CAS  Google Scholar 

  • de Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ Sci Technol 33:2726–2732

    Article  CAS  Google Scholar 

  • del Vecchio R, Blough NV (2002) Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling. Mar Chem 78:231–253

    Article  Google Scholar 

  • Dister B, Zafiriou OC (1993) Photochemical free-radical production-rates in the eastern Caribbean. J Geophys Res Oceans 98(C2):2341–2352

    Google Scholar 

  • Draper WM, Crosby DG (1981) Hydrogen peroxide and hydroxyl radical intermediates in indirect photolysis reactions in water. J Agric Food Chem 32:231–237

    Article  Google Scholar 

  • Draper WM, Crosby DG (1984) Solar photooxidation of pesticides in dilute H2O2. J Agric Food Chem 32:231–237

    Article  CAS  Google Scholar 

  • Duesterberg CK, Waite TD (2006) Process optimization of Fenton oxidation using kinetic modeling. Environ Sci Technol 40:4189–4195

    Article  CAS  Google Scholar 

  • Duesterberg CK, Cooper WJ, Waite TD (2005) Fenton-mediated oxidation in the presence and absence of oxygen. Environ Sci Technol 39:5052–5058

    Article  CAS  Google Scholar 

  • Duesterberg CK, Mylon SE, Waite TD (2008) pH effects on iron-catalyzed oxidation using Fenton’s reagent. Envion Sci Technol 42:8522–8527

    Article  CAS  Google Scholar 

  • Dykens JA, Shick JM, Benoit C, Buettner GR, Winston GW (1992) Oxygen radical production in the sea anemone Anthopleura Elegantissima and its endosymbiotic algae. J Exp Biol 168:219–241

    CAS  Google Scholar 

  • Emilio CA, Jardim WF, Littera MI, Mansilla HD (2002) EDTA destruction using the solar ferrioxalate AOT comparison with solar photo-Fenton. J Photochem Photobiol A Chem 151:121–127

    Article  CAS  Google Scholar 

  • Emmenegger L, Schwarzenbach R, Sigg L, Sulzberger B (2001) Light-induced redox cycling of iron in circumneutral lakes. Limnol Oceanogr 46:49–61

    Article  CAS  Google Scholar 

  • Ervens B, Gligorovski B, Herrmann H (2003) Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions. Phys Chem Chem Phys 5:1811–1824

    Article  CAS  Google Scholar 

  • Fang X, Mark G, von Sonntag C (1996) OH radical formation by ultrasound in aqueous solutions part I: the chemistry underlying the terephthalate dosimeter. Ultrason Sonochem 3:57–63

    Article  CAS  Google Scholar 

  • Farias J, Rossetti GH, Albizzati ED, Alfano OM (2007) Solar degradation of formic acid: temperature effects on the photo-Fenton reaction. Ind Eng Chem Res 46:7580–7586

    Article  CAS  Google Scholar 

  • Farias J, Albizzati ED, Alfano OM (2010) New pilot-plant photo-Fenton solar reactor for water decontamination. Ind Eng Chem Res 49:1265–1273

    Article  CAS  Google Scholar 

  • Faust BC (1994) A review of the photochemical redox reactions of iron species in atmosphere, oceanic, and surface waters: influences of geochemical cycles and oxidant formation. Helz GR, Zepp RG, Crosby DG (eds) Aquatic and surface photochemistry. Lewis Publishers, Boca Raton, pp 3–38

    Google Scholar 

  • Faust BC, Allen JM (1992) Aqueous-phase photochemical sources of peroxyl radicals and singlet molecular-oxygen in clouds and fog. J Geophys Res Atmos 97(D12):12913–12926

    Google Scholar 

  • Faust BC, Hoigne J (1987) Sensitized photooxidation of phenols by fulvic acid and in natural waters. Environ Sci Technol 21:957–964

    Article  CAS  Google Scholar 

  • Faust BC, Zepp RG (1993) Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ Sci Technol 27:2517–2522

    Article  CAS  Google Scholar 

  • Fenton HJ (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910

    Article  CAS  Google Scholar 

  • Fischer AM, Kliger DS, Winterle JS, Mill T (1985) Direct observations of phototransients in natural waters. Chemosphere 14:1299–1306

    Article  CAS  Google Scholar 

  • Fox MA (1993) The role of hydroxyl radicals in the photocatalyzed detoxification of organic pollutants—pulse-radiolysis and time-resolved diffuse-reflectance measurements. In: Ollis DF, Alekabi H (eds) Trace metals in the environment, 3, pp 163–167

    Google Scholar 

  • Fu P, Mostofa KMG, Wu FC, Liu CQ, Li W, Liao H, Wang L, Wang J, Mei Y (2010) Excitation-emission matrix characterization of dissolved organic matter sources in two eutrophic lakes (Southwestern China Plateau). Geochem J 44:99–112

    CAS  Google Scholar 

  • Gallard H, De Laat J Legube B (1998) Effect of pH on the oxidation rate of organic compounds by FeII/H2O2 mechanisms and simulation. New J Chem 22:263–268

    Google Scholar 

  • Gan D, Jia M, Vaughan PP, Falvey DE, Blough NV (2008) Aqueous photochemistry of methyl-benzoquinone. J Phys Chem A 112:2803–2812

    Article  CAS  Google Scholar 

  • Gao H, Zepp RG (1998) Factors influencing photoreactions of dissolved organic matter in a coastal river of the southern United States. Environ Sci Technol 32:2940–2946

    Article  CAS  Google Scholar 

  • Gjessing ET, Källqvist T (1991) Algicidal and chemical effect of uv-radiation of water containing humic substances. Water Res 25:491–494

    Article  CAS  Google Scholar 

  • Goldstein S, Rabani J (2008) Polychromatic UV photon irradiance measurements using chemical actinometers based on NO3 and H2O2 excitation: applications for industrial photoreactors. Environ Sci Technol 42:3248–3253

    Article  CAS  Google Scholar 

  • Goldstein S, Aschengrau D, Diamant Y, Rabani J (2007) Photolysis of aqueous H2O2: quantum yield and applications for polychromatic UV actinometry in photoreactors. Environ Sci Technol 41:7486–7490

    Article  CAS  Google Scholar 

  • Goldstone JV, Pullin MJ, Bertilsson S, Voelker BM (2002) Reactions of hydroxyl radical with humic substances: bleaching, mineralization, and production of bioavailable carbon substrates. Environ Sci Technol 36:364–372

    Article  CAS  Google Scholar 

  • Gopinathan C, Damle PS, Hart EJ (1972) Gamma-Ray irradiated sodium chloride as a source of hydrated electrons. J Phys Chem 76:3694–3698

    Article  CAS  Google Scholar 

  • Grannas AM, Martin CB, Chin Y, Platz M (2006a) Hydroxyl radical production from irradiated Arctic dissolved organic matter. Biogeochemistry 78:51–66

    Article  CAS  Google Scholar 

  • Grannas AM, Martin CB, Chin Y, Platz M (2006b) Hydroxyl radical production from irradiated Arctic dissolved organic matter. Biogeochemistry 78:51–66

    Article  CAS  Google Scholar 

  • Grebel JE, Pignatello JJ, Song W, Cooper WJ, Mitch WA (2009) Impact of halides on the photobleaching of dissolved organic matter. Mar Chem 115:134–144

    Article  CAS  Google Scholar 

  • Green R, Charlton R, Seftel H, Bothwell T, Mayet F, Adams B, Finch C, Layrisse M (1968) Body iron excretion in man: a collaborative study. Am J Med 45:336–353

    Article  CAS  Google Scholar 

  • Haag WR, Hoigné J (1985) Photo-sensitized oxidation in natural water via OH radicals. Chemosphere 14:1659–1671

    Article  CAS  Google Scholar 

  • Haag WR, Yao CCD (1992) Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26:1005–1013

    Article  CAS  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond Ser A 147:332–351

    Google Scholar 

  • Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359:25–40

    Article  CAS  Google Scholar 

  • Hardwick TJ (1957) The rate constant of the reaction between ferrous ions and hydrogen peroxide in acid solution. Can J Chem 35:428–436

    Article  CAS  Google Scholar 

  • Henglein A (1987) Sonochemistry: historical developments and modern aspects. Ultrasonics 25:6–16

    Article  CAS  Google Scholar 

  • Hislop KA, Bolton JR (1999) The photochemical generation of hydroxyl radicals in the UV-vis/ferrioxalate/H2O2 system. Environ Sci Technol 33:3119–3126

    Article  CAS  Google Scholar 

  • Ho P (1986) Photooxidation of 2,4 dinitrotoluene in aqueous solution in the presence of H2O2. Environ Sci Technol 20:260–267

    Article  CAS  Google Scholar 

  • Hoigné J, Bader H (1978) Ozone and hydroxyl radical-initiated oxidations of organic and organometallic trace impurities in water. In: Brinkman FE, Bellama JM (eds) Organometals and organometalloids occurrence and fate in the environment. American Chemical Society, Washington, pp 292–313

    Google Scholar 

  • Hoigné J, Bader H (1979) Ozonation of water: oxidation-competition values of different types of waters used in Switzerland. Ozone Sci Eng 1:357–372

    Article  Google Scholar 

  • Hoigné J, Faust BC, Haag WR, Zepp RG (1988) In influence of aquatic humic substances on fate and treatment of pollutants. In: MacCarthy P, Suffet IH (eds) ACS Symposium Series 219. American Chemical Society, Washington, pp 363–383

    Google Scholar 

  • Hoigné J, Faust BC, Haag WR, Scully FE, Zepp RG (1989) Aquatic humic substances as sources and sinks of photolytically produced transient reactants. In: Suffett IH, MacCarthy P (eds) Aquatic humic substances: influence on fate and treatment of pollutants. American Chemical Society, Washington, pp 363–381

    Google Scholar 

  • Hoigne′ J (1998) Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. In: Hrubec J (ed) The handbook of environmental chemistry. Springer Verlag, Heidelberg, pp 83–141

    Google Scholar 

  • Holder-Sandvik SL, Bilski P, Pakulski JD, Chignell CF, Coffin RB (2000) Photogeneration of singlet oxygen and free radicals in dissolved organic matter isolated from the Mississippi and Atchafalaya River plumes. Mar Chem 69:139–152

    Article  Google Scholar 

  • Hunt JP, Taube H (1952) The photochemical decomposition of hydrogen peroxide quantum yields, tracer and fractionation effects. J Am Chem Soc 74:5999–6002

    Article  CAS  Google Scholar 

  • Huston PL, Pignatello JJ (1996) Reduction of perchloroalkanes by ferrioxalate-generated carboxylate radical preceding mineralization by the photo-Fenton reaction. Environ Sci Technol 30:3457–3463

    Article  CAS  Google Scholar 

  • Jakob DJ (1986) Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate. J Geophys Res 91:9807–9826

    Article  Google Scholar 

  • Jeong J, Yoon J (2004) Dual roles of CO2 for degrading synthetic organic chemicals in the photo/ferrioxalate system. Water Res 38:3531–3540

    Article  CAS  Google Scholar 

  • Jeong J, Yoon J (2005) pH effect on OH radical production in photo/ferrioxalate system. Water Res 39:2893–2900

    Article  CAS  Google Scholar 

  • Jung YS, Lim WT, Park JY, Kim YH (2009) Effect of pH on Fenton and Fenton-like oxidation. Environ Technol 30:183–190

    Article  CAS  Google Scholar 

  • Kang SF, Liao CH, Po ST (2000) Decolorization of textile wastewater by photo-Fenton oxidation technology. Chemosphere 41:1287–1294

    Article  CAS  Google Scholar 

  • Kang NG, Lee D, Yoon J (2002) Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere 47:915–924

    Article  CAS  Google Scholar 

  • Katsumata H, Kaneco S, Suzuki T, Ohta K, Yobico Y (2006) Photo-Fenton degradation of alachlor in the presence of citrate solution. J Photochem Photobiol A Chem 180:38–45

    Article  CAS  Google Scholar 

  • Khan MMT, Martell AE (1967) Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen I cupric and ferric ion catalyzed oxidation. J Am Chem Soc 89:4176–4185

    Article  CAS  Google Scholar 

  • Kieber DJ, Blough NV (1990) Determination of carboncentered radicals in aqueous solution by liquid chromatography with fluorescence detection. Anal Chem 62:2275–2283

    Article  CAS  Google Scholar 

  • Kobayashi T, Nakatani N, Hirakawa T, Suzuki M, Miyake T, Chiwa M, Yuhara T, Hashimoto N, Inoue K, Yamamura K, Agus N, Sinogaya JR, Nakane K, Kume A, Arakaki T, Sakugawa H (2002) Variation in CO2 assimilation rate induced by simulated dew waters with different sources of hydroxyl radical (∙OH) on the needle surfaces of Japanese red pine (Pinus densiflora Sieb Et Zucc.). Environ Pollut 118:383–391

    Article  CAS  Google Scholar 

  • Komissarov GG (2003) Photosynthesis: the physical-chemical approach. J Adv Chem Phys 2:28–61

    Google Scholar 

  • Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14

    Article  CAS  Google Scholar 

  • Kremer ML (1999) Mechanism of the Fenton reaction evidence for a new intermediate. Phys Chem Chem Phys 1:3595–3605

    Article  CAS  Google Scholar 

  • Kume A, Tsuboi N, Satomura T, Suzuki M, Chiwa M, Nakane K, Sakurai N, Horikoshi T, Sakugawa H (2000) Physiological characteristics of Japanese red pine, Pinus densiflora Sieb et Zucc, in declined forests at Mt Gokurakuji in Hiroshima Prefecture, Japan. Trees 14:305–311

    Google Scholar 

  • Kwan WP, Voelker BM (2002) Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ Sci Technol 36:1467–1476

    Article  CAS  Google Scholar 

  • Langford JH, Carey CH (1975) Outer-sphere oxidations of alcohols and formic acid by charge transfer excited states of iron(III) species. Can J Chem 53:2436–2440

    Article  Google Scholar 

  • Le Truong G, De Laat J, Legube B (2004) Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2. Water Res 38:2384–2394

    Google Scholar 

  • Lee C, Sedlak DL (2009) A novel homogeneous Fenton-like system with Fe(III)-phosphotungstate for oxidation of organic compounds at neutral pH values. J Mol Catal A Chem 311:1–6

    Article  CAS  Google Scholar 

  • Lee Y, Jeong J, Lee C, Yoon J (2003a) Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/H2O2 process. Chemosphere 51:901–912

    Article  CAS  Google Scholar 

  • Lee Y, Lee C, Yoon J (2003b) High temperature dependence of 2,4-dichlorophenoxyacetic acid degradation by Fe3+/H2O2 system. Chemosphere 51:963–971

    Article  CAS  Google Scholar 

  • Lee C, Keenan CR, Sedlak DL (2008) Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ Sci Technol 42:4921–4926

    Article  CAS  Google Scholar 

  • Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698

    Article  CAS  Google Scholar 

  • Lehninger AL (1970) Biochemistry. Worth, New York, p 478

    Google Scholar 

  • Li SX, Hong HS, Zheng FY, Deng NS (2008) Effects of metal pollution and macronutrient enrichment on the photoproduction of hydroxyl radicals in seawater by the alga Dunaliella salina. Mar Chem 108:207–214

    Article  CAS  Google Scholar 

  • Lindsey ME, Tarr MA (2000a) Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere 41:409–417

    Article  CAS  Google Scholar 

  • Lindsey ME, Tarr MA (2000b) Inhibited hydroxyl radical degradation of aromatic hydrocarbons in the presence of dissolved fulvic acid. Water Res 34:2385–2389

    Article  CAS  Google Scholar 

  • Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888

    Article  CAS  Google Scholar 

  • Mabury SA (1993) Hydroxyl radical in natural waters. Ph D dissertation, University of California, Davis, California

    Google Scholar 

  • Machulek A, Moraes JEF, Vautier-Giongo C, Silverio CA, Friedrich LC, Nascimento CAO, Gonzalez MC, Quina FH (2007) Abatement of the inhibitory effect of chloride anions on the photo-Fenton process. Environ Sci Technol 41:8459–8463

    Article  CAS  Google Scholar 

  • Mack J, Bolton JR (1999) Photochemistry of nitrite and nitrate in aqueous solution: a review. J Photochem Photobiol A Chem 128:1–13

    Article  CAS  Google Scholar 

  • Maddigapu PR, Bedini A, Minero C, Maurino V, Vione D, Brigante M, Mailhot G, Sarakha M (2010) The pH-dependent photochemistry of anthraquinone-2-sulfonate. Photochem Photobiol Sci 9:323–330

    Article  CAS  Google Scholar 

  • Maddigapu PR, Minero C, Maurino V, Vione D, Brigante M, Charbouillot T, Sarakha M, Mailhot G (2011) Photoinduced and photosensitised reactions involving 1-nitronaphthalene and nitrite in aqueous solution. Photochem Photobiol Sci 10:601–609. doi:http:dxdoiorg/101039/C0PP00311E

    Article  CAS  Google Scholar 

  • Mageli OL, Kolczynski JR (1966) Organic peroxides. Ind Eng Chem 58:25–32

    Article  CAS  Google Scholar 

  • Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous solutions formation of hydroxyl radicals and hydrogen atoms. J Phys Chem 87:1369–1377

    Article  CAS  Google Scholar 

  • Mark G, Korth H-G, Schuchmann H-P, von Sonntag C (1996) The photochemistry of aqueous nitrate ion revisited. J Photochem Photobiol A Chem 101:89–103

    Article  CAS  Google Scholar 

  • Matykiewiczová N, Kurková R, Klánová J, Klán P (2007) Photolytically induced nitration and hydroxylation of organic aromatic compounds in the presence of nitrate or nitrite in ice. J Photochem Photobiol A Chem 187:24–32

    Article  CAS  Google Scholar 

  • Maurino V, Borghesi D, Vione D, Minero C (2008) Transformation of phenolic compounds upon UVA irradiation of anthraquinone-2-sulfonate. Photochem Photobiol Sci 7:321–327

    Article  CAS  Google Scholar 

  • McKnight DM, Kimball BA, Bencala KE (1988) Iron photoreduction and oxidation in an acidic mountain stream. Science 240:637–640

    Article  CAS  Google Scholar 

  • Meyerstein D, Treinin A (1961) Absorption spectra of NO3 in solution. Tram Faraday Soc 57:2104–2112

    Article  CAS  Google Scholar 

  • Micinski E, Ball LA, Zafiriou OC (1993) Photochemical oxygen activation: Superoxide radical detection and production rates in the eastern Caribbean. J Geophys Res Oceans 98(C2):2299–2306

    Google Scholar 

  • Mill T, Hendry DG, Richardson H (1980) Free-radical oxidants in natural waters. Science 207:886–887

    Article  CAS  Google Scholar 

  • Miller PL, Chin YP (2002) Photoinduced degradation of carbaryl in wetland surface water. J Agric Food Chem 50:6758–6765

    Article  CAS  Google Scholar 

  • Miller DM, Buettner GR, Aust SD (1990) Transition metals as a catalysts of “autoxidation” reactions. Free Radic Biol Med 8:95–108

    Article  CAS  Google Scholar 

  • Miller WL, King DW, Lin J, Kester DR (1995) Photochemical redox cycling of iron in coastal seawater. Mar Chem 50:63–77

    Article  CAS  Google Scholar 

  • Miller WL, Moran MA, Sheldon WM, Zepp RG, Opsahl S (2002) Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts. Limnol Oceanogr 47:343–352

    Article  CAS  Google Scholar 

  • Millero FJ, Sotolongo S (1989) The oxidation of Fe(II) with H2O2 in seawater. Geochim Cosmochim Acta 53:1867–1873

    Article  CAS  Google Scholar 

  • Millington KR, Maurdev G (2004) The generation of superoxide and hydrogen peroxide by exposure of fluorescent whitening agents to UVA radiation and its relevance to the rapid photoyellowing of whitened wool. J Photochem Photobiol A Chem 165:177–185

    Article  CAS  Google Scholar 

  • Minakata D, Li K, Westerhoff P, Crittenden J (2009) Development of a group contribution method to predict aqueous phase hydroxyl radical (HO) reaction rate constants. Environ Sci Technol 43:6220–6227

    Article  CAS  Google Scholar 

  • Minella M, Rogora M, Vione D, Maurino V, Minero C (2011) A model approach to assess the long-term trends of indirect photochemistry in lake water. The case of Lake Maggiore (NW Italy). Sci Total Environ 409:3463–3471

    Article  CAS  Google Scholar 

  • Moffett JW, Zika RG (1987a) Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ Sci Technol 21:804–810

    Article  CAS  Google Scholar 

  • Moffett JW, Zika RG (1987b) Photochemistry of a copper complexes in sea water In: Zika RG, Cooper WJ (eds) Photochemistry of environmental aquatic systems, ACS symposium Ser 327. American Chemical Society, Washington, pp 116–130

    Google Scholar 

  • Moore CA, Farmer CT, Zika RG (1993) Influence of the Orinoko River on hydrogen peroxide distribution and production in the Eastern Caribean. J Geophys Res 98(C2):2289–2298

    Google Scholar 

  • Mopper K, Kieber DJ (2000) Marine photochemistry and its impact on carbon cycling. In: de Mora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp 101–129

    Google Scholar 

  • Mopper K, Zhou X (1990) Hydroxyl radical photoproduction in the sea and its potential impact on marine processes. Science 250:661–664

    Article  CAS  Google Scholar 

  • Moran MA, Zepp RG (1997) Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr 42:1307–1316

    Article  CAS  Google Scholar 

  • Moran MA Jr, Sheldon WM, Zepp RG (2000) Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol Oceanogr 45:1254–1264

    Article  CAS  Google Scholar 

  • Morse DE, Duncan H, Hooker N, Morse A (1977) Hydrogen peroxide induces spawning in mollusks, with activation of prostaglandin endoperoxide synthetase. Science 196:298–300

    Article  CAS  Google Scholar 

  • Mostofa KMG, Sakugawa H (2009) Spatial and temporal variations and factors controlling the concentrations of hydrogen peroxide and organic peroxides in rivers. Environ Chem 6:524–534

    Article  CAS  Google Scholar 

  • Mostofa KMG, Honda Y, Sakugawa H (2005) Dynamics and optical nature of fluorescent dissolved organic matter in river waters in Hiroshima prefecture Japan. Geochem J 39:257–271

    Article  CAS  Google Scholar 

  • Mostofa KMG, Yoshioka T, Konohira E, Tanoue E (2007) Photodegradation of fluorescent dissolved organic matters in river waters. Geochem J 41:323–331

    Article  CAS  Google Scholar 

  • Mostofa KMG, Wu FC, Yoshioka T, Sakugawa H, Tanoue E (2009a) Dissolved organic matter in the aquatic environments. In: Wu FC, Xing B (eds) Natural organic matter and its significance in the environment. Science Press, Beijing, pp 3–66

    Google Scholar 

  • Mostofa KMG, Liu CQ, Wu FC, Fu PQ, Ying WL, Yuan J (2009b) Overview of key biogeochemical functions in lake ecosystem: impacts of organic matter pollution and global warming keynote speech. In: Proceedings of the 13th world lake conference Wuhan, China, 1–5 Nov 2009, pp 59–60

    Google Scholar 

  • Mostofa KMG, Wu FC, Liu CQ, Yoshioka T, Sakugawa H, Tanoue E (2011) Photochemical, microbial and metal complexation behavior of fluorescent dissolved organic matter in the aquatic environments (Invited review). Geochem J 45:235–254

    CAS  Google Scholar 

  • Mulazzani QG, D’Angelantonio M, Venturi M, Hoffmann MZ, Rodgers MA (1986) Interaction of formate and oxalate ions with radiation-generated radicals in aqueous solution Methylviologen as a mechanistic probe. J Phys Chem 90:5352–5437

    Article  Google Scholar 

  • Muñoz I, Rieradevall J, Torrades F, Peral J, Dome`nech X (2006a) Environmental assessment of different advanced oxidation processes applied to a bleaching kraft mill effluent. Chemosphere 62:9–16

    Article  CAS  Google Scholar 

  • Muñoz I, Rieradevall J, Torrades F, Peral J, Dome`nech X (2006b) Environmental assessment of different advanced oxidation processes applied to a bleaching kraft mill effluent. Chemosphere 62:9–16

    Article  CAS  Google Scholar 

  • Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. Marcel Dekker, New York, pp 299–305

    Google Scholar 

  • Nakatani N, Miyake T, Chiwa M, Hashimoto M, Arakaki T, Sakugawa H (2001) Photochemical formation of OH radicals in dew formed on the pine needles at Mt Gokurakuji. Water Air Soil Pollut 130:397–402

    Article  Google Scholar 

  • Nakatani N, Hashimoto N, Sakugawa H (2004) An evaluation of hydroxyl radical formation in river water and the potential for photodegradation of bisphenol A. In: Hill RJ, Leventhal J, Aizenshtat Z, Baedecker MJ, Claypool G, Eganhouse R, Goldhaber M, Peters K (eds) The geochemical society special publication series 9, Geochemical investigations in earth and space science: a tribute to Isaac R Kaplan. Elsevier, Amsterdam, pp 233–242

    Google Scholar 

  • Nakatani N, Ueda M, Shindo H, Takeda K, Sakugawa H (2007) Contribution of the photo-Fenton reaction to hydroxyl radical formation rates in river and rain water samples. Anal Sci 23:1137–1142

    Article  CAS  Google Scholar 

  • Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17:1027–1284

    CAS  Google Scholar 

  • Nogueira RP, Guimaraes JR (2000) Photodegradation of dichloroacetic acid and 2,4-dichlorophenol by ferrioxalate/H2O2 system. Water Res 34:895–901

    Article  CAS  Google Scholar 

  • Oda T, Akaike T, Sato K, Ishimatsu A, Takeshita S, Muramatsu T, Maeda H (1992) Hydroxyl radical generation by red tide algae. Arch Biochem Biophys 294:38–43

    Article  CAS  Google Scholar 

  • Ollis DF, Pellizetti E, Serpone N (1991) Photocatalytic destruction of water contaminants. Environ Sci Technol 25:1522–1529

    Article  CAS  Google Scholar 

  • Osburn CL, O’Sullivan DW, Boyd TJ (2009) Increases in the longwave photobleaching of chromophoric dissolved organic matter in coastal waters. Limnol Oceanogr 54:145–159

    Article  Google Scholar 

  • Page SE, Arnold WA, McNeill K (2011) Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. Environ Sci Technol 45:2818–2825

    Article  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome C oxidase activity and on the cardilipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326

    Article  CAS  Google Scholar 

  • Petasne RG, Zika RG (1987) Fate of superoxide in coastal sea water. Nature 325:516–518

    Article  CAS  Google Scholar 

  • Pham AN, Waite TD (2008) Oxygenation of Fe(II) in natural waters revisited: Kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways. Geochim Cosmochim Acta 72:3616–3630

    Article  CAS  Google Scholar 

  • Pignatello JJ (1992) Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Technol 26:944–951

    Article  CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  • Pleskov YV, Gurevich YY (1986) Semiconductor photoelectron chemistry. Consultants Bureau, New York, p 29

    Google Scholar 

  • Po HN, Sutin N (1968) The stability constant of the monochloro complex of iron (II). Inorg Chem 7:621–624

    Article  CAS  Google Scholar 

  • Pochon A, Vaughan PP, Gan DQ, Vath P, Blough NV, Falvey DE (2002) Photochemical oxidation of water by 2-methyl-1,4-benzoquinone: evidence against the formation of free hydroxyl radical. J Phys Chem A 106:2889–2894

    Article  CAS  Google Scholar 

  • Pozdnyakov IP, Glebov EM, Plyusnin VF, Grivin VP, Ivanov YV, Vorobyev DY, Bazhin NM (2000) Hydroxyl radical formation upon photolysis of the Fe(OH)2+ complex in aqueous solution. Mendeleev Commun 10:185–186

    Article  Google Scholar 

  • Prousek J (1996) Advanced oxidation processes for water treatment photochemical processes. Chem Listy 90:307–315

    CAS  Google Scholar 

  • Pullin MJ, Bertilsson S, Goldstone JV, Voelker BM (2004) Effects of sunlight and hydroxyl radical on dissolved organic matter: bacterial growth efficiency and production of carboxylic acids and other substrates. Limnol Oceanogr 49:2011–2022

    Article  CAS  Google Scholar 

  • Qian J, Mopper K, Kieber DJ (2001) Photochemical production of the hydroxyl radical in Antarctic waters. Deep-Sea Res I 48:741–759

    Article  CAS  Google Scholar 

  • Radtke K, Byrnes RW, Kerrigan P, Antholine WE, Petering DH (1992) Requirement of endogenous iron for cytotoxicity caused by hydrogen peroxide in euglena gracilis. Mar Environ Res 34:339–343

    Article  CAS  Google Scholar 

  • Randall CE, Harvey VL, Manney GL, Orsolini Y, Codrescu M, Sioris C, Brohede S, Haley CS, Gordley LL, Zawdony JM, Russell JM (2005) Stratospheric effects of energetic particle precipitation in 2003–2004. Geophys Res Lett LO5082 doi:101029/2004GL022003

    Google Scholar 

  • Rex M, Harris NRP, der Gathen P, Lehman R, Braathen GO, Reimer E, Beck A, Chipperfield MP, Alfier R, Allaart M, O’Conner F, Dier H, Dorokhov V, Fast H, Gil M, Kyro E, Litynska Z, Mikkelsen IB, Molyneux MG, Nakane H, Notholt J, Rummukainen M, Viatte P, Wenger J (1997) Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature 389:835–838

    Google Scholar 

  • Ross AB, Mallard WG, Helman WP, Buxton, Huie RE, Neta P (1994) NDRL-NIST Solution Kinetics Database: -Ver 20. National Institute for Standards and Technology, Gaithersburg

    Google Scholar 

  • Rossetti GH, Albizzati ED, Alfano OM (2002) Decomposition of formic acid in a water solution employing the photo-Fenton reaction. Ind Eng Chem Res 41:1436–1444

    Article  CAS  Google Scholar 

  • Ruppert G, Bauer R, Heisler GJ (1993) The photo-Fenton reaction- an effective photochemical wastewater treatment process. J Photochem Photobiol A Chem 73:75–78

    Article  CAS  Google Scholar 

  • Rush JD, Bielski GHJ (1985) Pulse radiolytic studies of the reactions of HO2/O2-with Fe(II)/Fe(III) ions. The reactivity of HO2/O2-with ferric ions and its implications on the occurrence of the Haber-Weiss reaction. J Phys Chem 89:5062–5066

    Article  CAS  Google Scholar 

  • Russi H, Kotzias D, Korte F (1982) Photoinduzierte hydroxylierungsreaktionen organischer chemikalien in naturlichen gewassern: nitrate als potentielle OH-radikalquellen. Chemosphere 11:1041–1048

    Article  CAS  Google Scholar 

  • Safazadeh-Amiri A, Bolton JR, Cater SR (1996) Ferrioxalate-mediated solar degradation of organic contaminants in water. Sol Energy 56:439–443

    Article  Google Scholar 

  • Safazadeh-Amiri A, Bolton JR, Cater SR (1997) Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Res 31:2079–2085

    Google Scholar 

  • Sakugawa H, Kaplan IR, Tsai W, Cohen Y (1990) Atmospheric hydrogen peroxide. Environ Sci Technol 24:1452–1462

    Article  CAS  Google Scholar 

  • Saquib M, Tariq MA, Haque MM, Muneer M (2008) Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process. J Environ Manag 88:300–306

    Article  CAS  Google Scholar 

  • Scarpa M, Stevanato R, Viglino P, Rigo A (1983) Superoxide ion as active intermediate in the autooxidation of ascorbate by molecular oxygen. J Biol Chem 258:6695–6697

    CAS  Google Scholar 

  • Schiavello M (1987) Basic concepts in photocatalysis. In: Schiavello M (ed) Photocatalysis and environmental trends and applications. Kluwer Academic Publishers, The Netherlands, pp 351–360

    Google Scholar 

  • Schuchmann MN, Von Sonntag C (1979) Hydroxyl radical-induced oxidation of 2-methyl-2-propanol in oxygenated aqueous solution: a product and pulse radiolysis study. J Phys Chem 83:780–784

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley, New York, pp 436–484

    Google Scholar 

  • Sedlak DL, Hoigné J (1993) The role of copper and oxalate in the redox cycling of iron in atmospheric waters. Atmos Environ 27A:2173–2185

    CAS  Google Scholar 

  • Senesi N (1990) Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals Part II The fluorescence spectroscopy approach. Anal Chim Acta 232:77–106

    Article  CAS  Google Scholar 

  • Serpone N, Pelizzetti E (1989) Photocatalysis: fundamentals and applications. Wiley, New York, p 650

    Google Scholar 

  • Shuali U, Ottolenghi M, Rabani J, Yelin Z (1969) On photochemistry of aqueous nitrate solutions excited in 195-nm band. J Phys Chem 73:3445–3451

    Article  CAS  Google Scholar 

  • Skinner JF, Glasel A, Hsu L-C, Funt BL (1980) Rotating ring disk electrode study of the hydrogen peroxide oxidation of Fe(II) and Cu(I) in hydrochloric acid. J Electrochem Soc 127:315–324

    Article  CAS  Google Scholar 

  • Song RG, Westerhoff P, Minear RA, Amy GL (1996) Interaction between bromine and natural organic matter. In: Minear RA, Amy GL (eds) Water disinfection and natural organic matter. American Chemical Society, Washington, pp 298–321

    Google Scholar 

  • Southworth BA, Voelker BM (2003) Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid. Environ Sci Technol 37:1130–1136

    Article  CAS  Google Scholar 

  • Staehelin J, Hoigné J (1985) Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ Sci Technol 19:1206–1213

    Article  CAS  Google Scholar 

  • Strehlow H, Wagner I (1982) Flash photolysis of nitrite ions in aqueous solutions. Z Phys Chem Neue Folge 132:151–160

    Article  CAS  Google Scholar 

  • Strickler SJ, Kasha M (1963) Solvent effects on the electronic absorption spectrum of nitrite ion. J Am Chem Soc 85:2899–2901

    Article  CAS  Google Scholar 

  • Sun L, Bolton JR (1996) Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J Phys Chem 100:4127–4134

    Article  CAS  Google Scholar 

  • Sun Y, Pignatello J (1993) Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV. Environ Sci Technol 27:304–310

    Article  Google Scholar 

  • Sun B, Sato M, Sid Clements J (1997) Optical study of active species produced by a pulsed streamer corona discharge in water. J Electrostat 39(3):189–202

    Google Scholar 

  • Sur B, Rolle M, Minero C, Maurino V, Vione D, Brigante M, Mailhot G (2011) Formation of hydroxyl radicals by irradiated 1-nitronaphthalene (1NN): oxidation of hydroxyl ions and water by the 1NN triplet state. Photochem Photobiol Sci 10:1817–1824

    Article  CAS  Google Scholar 

  • Sychev AY, Isak VG (1995) Iron compounds and the mechanisms of the homogeneous catalysis of the activation of O2 and H2O2 and of the oxidation of organic substrates. Russ Chem Rev 64:1105–1129

    Article  Google Scholar 

  • Takahashi N, Nakai T, Satoh Y, Katoh Y (1995) Ozonolysis of humic acid and its effect on decoloration and biodegradability. Ozone Sci Eng 17:511–525

    Article  CAS  Google Scholar 

  • Takeda K, Takedoi H, Yamaji S, Ohta K, Sakugawa H (2004) Determination of hydroxyl radical photoproduction rates in natural waters. Anal Sci 20:153–158

    Article  CAS  Google Scholar 

  • Taylor RC, Cross PC (1949) Light absorption of aqueous hydrogen peroxide solutions in the near ultraviolet region. J Am Chem Soc 71:2266–2268

    Article  CAS  Google Scholar 

  • Torrents A, Anderson BG, Bilboulian S, Johnson WE, Hapeman CJ (1997) Atrazine photolysis: mechanistic investigations of direct and nitrate mediated hydroxy radical processes and the influence of dissolved organic carbon from the Chesapeake Bay. Environ Sci Technol 31:1476–1482

    Article  CAS  Google Scholar 

  • Tossell JA (2005) Calculation of the interaction of bicarbonate ion with arsenites in aqueous solution and with the surfaces of Al hydroxide minerals. ACS Symp Ser, Chapter 9, 915:118–130

    Google Scholar 

  • Tranvik LJ (1992) Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229:107–114

    Article  CAS  Google Scholar 

  • Treinin A, Hayon E (1970) Absorption spectra and reaction kinetics of NO2, N2O3, and N2O4 in aqueous solution. J Am Chem Soc 92:5821–5828

    Article  CAS  Google Scholar 

  • Tseng JM, Haung CP (1991) Removal of chlorophenols from water by photocatalytic oxidation. Water Sci Technol 23:377–387

    CAS  Google Scholar 

  • Ullah SS, Khan MGM, Rahman ABMS (1998) Photocatalytic decomposition of phenols by titanium dioxide under sunlight and UV. J Bang Acad Sci 22:29–37

    CAS  Google Scholar 

  • Valentine JS (1973) The dioxygen ligand in mononuclear group VIII transition metal complexes. Chem Rev 73:235–345

    Article  CAS  Google Scholar 

  • Vaughn PP, Blough NV (1998) Photochemical formation of hydroxyl radical by constituents of natural waters. Environ Sci Technol 32:2947–2953

    Article  Google Scholar 

  • Vel Leitner NK, Dore M (1996) Hydroxyl radical induced decomposition of aliphatic acids in oxygenated and deoxygenated aqueous solutions. J Photochem Photobiol A Chem 99:137–143

    Article  Google Scholar 

  • Venkatadri R, Peters R (1993) Chemical oxidation technologies. Hazard Waste Hazard Mater 10:107–149

    Article  CAS  Google Scholar 

  • Vermilyea AW, Voelker BM (2009) Photo-Fenton reaction at near neutral pH. Environ Sci Technol 43:6927–6933

    Article  CAS  Google Scholar 

  • Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem 15:785–790

    Article  CAS  Google Scholar 

  • Vione D, Maurino V, Minero C, Pelizzetti E (2001a) Phenol photonitration upon UV irradiation of nitrite in aqueous solution II: effects of pH and TiO2. Chemosphere 45:903–910

    Article  CAS  Google Scholar 

  • Vione D, Maurino V, Minero C, Pelizzetti E (2001b) Phenol photonitration upon UV irradiation of nitrite in aqueous solution II: effects of pH and TiO2. Chemosphere 45:903–910

    Article  CAS  Google Scholar 

  • Vione D, Maurino V, Minero C, Vincenti M, Pelizzetti E (2003a) Aromatic photonitration in homogeneous and heterogeneous aqueous systems. Environ Sci Pollut Res 10:321–324

    Article  CAS  Google Scholar 

  • Vione D, Maurino V, Minero C, Borghesi D, Lucchiari M, Pelizzetti E (2003b) New processes in the environmental chemistry of nitrite 2 the role of hydrogen peroxide. Environ Sci Technol 37:4635–4641

    Article  CAS  Google Scholar 

  • Vione D, Merlo F, Maurino V, Minero C (2004a) Effect of humic acids on the fenton degradation of phenol. Environ Chem Lett 2:129–133

    Article  CAS  Google Scholar 

  • Vione D, Maurino V, Pelizzetti E, Minero C (2004b) Phenol photonitration and photonitrosation upon nitrite photolysis in basic solution. Int J Environ Anal Chem 84:493–504

    Article  CAS  Google Scholar 

  • Vione D, Falletti G, Maurino V, Minero C, Pelizzetti E, Malandrino M, Ajassa R, Olariu R-I, Arsene C (2006) Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ Sci Technol 40:3775–3781

    Article  CAS  Google Scholar 

  • Vione D, Maurino V, Cucu Man S, Khanra S, Arsene C, Olariu RI, Minero C (2008) Formation of organobrominated compounds in the presence of bromide under simulated atmospheric aerosol conditions. ChemSusChem 1:197–204

    Google Scholar 

  • Vione D, Khanra S, Man SC, Maddigapu PR, Das R, Arsene C, Olariu RI, Maurino V, Minero C (2009a) Inhibition vs enhancement of the nitrate-induced phototransformation of organic substrates by the OH scavengers bicarbonate and carbonate. Water Res 43:4718–4728

    Article  CAS  Google Scholar 

  • Vione D, Maurino V, Minero C, Carlotti ME, Chiron S, Barbati S (2009b) Modelling the occurrence and reactivity of the carbonate radical in surface freshwater. Comptes Rendus Chimie 12:865–871

    Article  CAS  Google Scholar 

  • Vione D, Lauri V, Minero C, Maurino V, Malandrino M, Carlotti ME, Olariu RI, Arsene C (2009c) Photostability and photolability of dissolved organic matter upon irradiation of natural water samples under simulated sunlight. Aquat Sci 71:34–45

    Article  CAS  Google Scholar 

  • Vione D, Casanova I, Minero C, Duncianu M, Olariu RI, Arsene C (2009d) Assessing the potentiality of Romanian surface waters to produce hydroxyl and nitrite radicals. Revista De Chimie 60:123–126

    CAS  Google Scholar 

  • Vione D, Ponzo M, Bagnus D, Maurino V, Minero C, Carlotti ME (2010) Comparison of different probe molecules for the quantification of hydroxyl raidcals in aqueous solution. Environ Chem Lett 8:95–100

    Article  CAS  Google Scholar 

  • Voelker BM, Sulzberger B (1996) Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ Sci Technol 30:1106–1114

    Article  CAS  Google Scholar 

  • Voelker BM, Morel FMM, Sulzberger B (1997) Iron redox cycling in surface waters: effects of humic substances and light. Environ Sci Technol 31:1004–1011

    Article  CAS  Google Scholar 

  • Voelker BM, Sedlak DL, Zafiriou OC (2000) Chemistry of superoxide radical in seawater: Reactions with organic Cu complexes. Environ Sci Technol 34:1036–1042

    Article  CAS  Google Scholar 

  • Volman DH, Chen JC (1959) The photochemical decomposition of hydrogen peroxide in aqueous solutions of allyl alcohol at 2537 A. J Am Chem Soc 81:4141–4144

    Article  CAS  Google Scholar 

  • von Gunten U, Oliveras Y (1997) Kinetics of the reaction between hydrogen peroxide and hypobromous acid: implication on water treatment and natural systems. Water Res 31:900–906

    Article  Google Scholar 

  • von Sonntag C (2006) Free-radical-induced DNA damage and its repair a chemical perspective. Springer Verlag, Berlin, pp 359–482

    Google Scholar 

  • von Sonntag C (2007) The basics of oxidants in water treatment Part A: OH radical reactions. Water Sci Technol 55:19–23

    Google Scholar 

  • von Sonntag C, Mark G, Mertens R, Schuchmann MN, Schuchmann H-P (1993) UV-radiation and/or oxidants in water pollution control. J Water Supply Res Technol Aquat 42:201–211

    Google Scholar 

  • Wagner I, Strehlow H, Busse G (1980) Flash-photolysis of nitrate ions in aqueous-solution. Z Phys Chem 123:1–33

    Google Scholar 

  • Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131

    Article  CAS  Google Scholar 

  • Walling C, Weil T (1974) The ferric ion catalyzed decomposition of hydrogen peroxide in perchloric acid solution. Int J Chem Kinet 6:507–516

    Article  CAS  Google Scholar 

  • Wang GS, Liao CH, Wu FJ (2001) Photodegradation of humic acids in the presence of hydrogen peroxide. Chemosphere 42:379–387

    Article  CAS  Google Scholar 

  • Wang Z, Chen X, Ji H, Ma W, Chen C, Zhao J (2010) Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. Environ Sci Technol 44:263–268

    Article  CAS  Google Scholar 

  • Warneck P, Wurzinger C (1988) Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution. J Phys Chem 92:6278–6283

    Article  CAS  Google Scholar 

  • Wells CF, Salam MA (1967) Complex formation between Fe(II) and inorganic anions. Trans Faraday Soc 63:620–629

    Google Scholar 

  • Wells CF, Salam MA (1968) The effect of pH on the kinetics of the reaction of iron (II) with hydrogen peroxide in perchlorate media. J Chem Soc (A):24–29

    Google Scholar 

  • Westerhoff P, Aiken G, Army G, Debroux J (1999) Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res 33:2265–2276

    Article  CAS  Google Scholar 

  • Westerhoff P, Mezyk SP, Cooper WJ, Minakata D (2007) Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates. Environ Sci Technol 41:4610–4646

    Article  CAS  Google Scholar 

  • White EM, Vaughan PP, Zepp RG (2003) Role of photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of coloured dissolved organic matter in a coastal river of the southern United States. Aquat Sci 65:402–414

    Article  CAS  Google Scholar 

  • Williams NH, Yandell JK (1982) Outer-sphere electron-transfer reaction of ascorbate anions. Aust J Chem 35:1133–1144

    Article  CAS  Google Scholar 

  • Winterbourn CC (1993) Superoxide as an intracellular radical sink. Free Radic Biol Med 14:85–90

    Article  CAS  Google Scholar 

  • Wu F, Deng N, Zuo Y (1999) Discoloration of dye solutions induced by solar photolysis of ferrioxalate in aqueous solutions. Chemosphere 39:2079–2085

    Article  CAS  Google Scholar 

  • Xu T, Cai Y, Mezyk SP, O’Shea KE (2005) The roles of hydroxyl radical, superoxide anion radical, and hydrogen peroxide in the oxidation of arsenite by ultrasonic irradiation advances in arsenic research. American Chemical Society, Washington, pp 333–343

    Google Scholar 

  • You J-L, Fong FK (1986) Superoxide photogeneration by chlorophyll A in water/acetone Electron spin resonance studies of radical intermediates in chlorophyll A photoreaction in vitro. Biochem Biophys Res Commun 139:1124–1129

    Article  CAS  Google Scholar 

  • Zafiriou OC (1974) Sources and reactions of OH and daughter radicals in seawater. J Geophys Res 79:4491–4497

    Article  CAS  Google Scholar 

  • Zafiriou OC (1990) Chemistry of superoxide ion-radical (O2-) in seawater: I pK*asw (HOO) and uncatalyzed dismutation kinetics studies by pulse radiolysis. Mar Chem 30:31–43

    Article  CAS  Google Scholar 

  • Zafiriou OC, Bonneau R (1987) Wavelength-dependent quantum yield of OH radical formation from photolysis of nitrite ion in water. Photochem Photobiol 15:723–727

    Article  Google Scholar 

  • Zafiriou OC, Dister B (1991) Photochemical free-radical production-rates-Guld of marine and Woods-Hole Miami transect. J Geophys Res Oceans 96(C3):4939–4945

    Google Scholar 

  • Zafiriou OC, True MB (1979a) Nitrite photolysis in seawater by sunlight. Mar Chem 8:9–32

    Article  CAS  Google Scholar 

  • Zafiriou OC, True MB (1979b) Nitrate photolysis in seawater by sunlight. Mar Chem 8:33–42

    Article  CAS  Google Scholar 

  • Zafiriou OC, Joussot-Dubien J, Zepp RG, Zika RG (1984) Photochemistry of natural waters. Environ Sci Technol 18:356A–371A

    Google Scholar 

  • Zafiriou OC, True Mary B, Hayon E (1987) Consequences of OH radical reaction in sea water: formation and decay of Br2- ion radical, Photochemistry of environmental aquatic systems. American Chemical Society, Washington, pp 89–105

    Google Scholar 

  • Zafiriou OC, True Mary B, Hayon E (1987) Consequences of OH radical reaction in sea water: formation and decay of Br2− ion radical, Photochemistry of environmental aquatic systems. American Chemical Society, Washington, pp 89–105

    Google Scholar 

  • Zafiriou OC, Voelker BM, Sedlak DL (1998) Chemistry of the superoxide radical (O2) in seawater: Reactions with inorganic copper complexes. J Phys Chem A 102:5693–5700

    Article  CAS  Google Scholar 

  • Zang L-Y, Stone K, Pryor WA (1995) Detection of free radicals in aqueous extracts of cigarette tar by electron spin resonance. Free Radic Biol Med 19(2):161–167

    Google Scholar 

  • Zellner R, Exner M, Herrmann H (1990) Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H2O2 at 308 and 351 nm in the temperature range 278–353 K. J Atmos Chem 10:411–425

    Article  CAS  Google Scholar 

  • Zepp RG (2002) Solar ultraviolet radiation and aquatic carbon, nitrogen, sulfur and metals cycles In: Helbling EW, Zagarese H (eds) UV effects in aquatic organisms and ecosystems. Royal Society of Chemistry, Cambridge, pp 137–183

    Google Scholar 

  • Zepp RG, Hoigné J, Bader H (1987a) Nitrate-induced photooxidation of trace organic chemicals in water. Environ Sci Technol 21:443–450

    Article  CAS  Google Scholar 

  • Zepp RG, Skurlatov YI, Pierce JT (1987) Algal-induced decay and formation of hydrogen peroxide in water: its possible role in oxidation of anilines by algae. In: Zika RG, Cooper WJ (eds) Photochemistry of environmental aquatic systems, ACS Symp Ser 327. American Chemical Society, Washington, pp 213–224

    Google Scholar 

  • Zepp RG, Faust BC, Hoigné J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the Photo-Fenton reaction. Environ Sci Technol 26:313–319

    Article  CAS  Google Scholar 

  • Zhao B, Li X, He R, Cheng S, Wenjuan X (1989) Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biochem Biophys 14:175–185

    CAS  Google Scholar 

  • Zhou X, Mopper K (1990) Determination of photolytically produced hydroxyl radicals in seawater and freshwater. Mar Chem 30:71–88

    Article  CAS  Google Scholar 

  • Zika RG, Milne PJ, Zafiriou OC (1993) Photochemical studies of the eastern Caribbean—an introductory overview. J Geophys Res Oceans 98(C2):2223–2232

    Google Scholar 

  • Zimbron JA, Reardon KF (2005) Hydroxyl free radical reactivity toward aqueous chlorinated phenols. Water Res 39:865–869

    Article  CAS  Google Scholar 

  • Zuo Y, Hoigné J (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ Sci Technol 26:1014–1022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported jointly by the National Natural Science Foundation of China and the Chinese Academy of Sciences. This work was partly supported by Hiroshima University, Japan; PNRA—Progetto Antartide, University of Turin, Italy; Brook Byers Institute for Sustainable Systems at Georgia Institute of Technology, the United States; Aligarh Muslim University, India; and Northwest Missouri State University, USA. This chapter acknowledges the reprinted from reprinted (adapted) with permission from Kwan WP, Voelker BM, Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite, Environmental Science & Technology, 36 (7), 1467–1476. Copyright (2002) Americal Chemical Society; reprinted (adapted) with permission from Farias J, Rossetti GH, Albizzati ED, Alfano OM, Solar degradation of formic acid: temperature effects on the photo-Fenton reaction. Industrial & Engineering Chemistry Research, 46(23):7580–7586). Copyright (2007) American Chemical Society; reprinted from Journal of Photochemistry and Photobiology A: Chemistry, 128(1–3), Mack J, Bolton JR, Photochemistry of nitrite and nitrate in aqueous solution: a review, 1–13. Copyright (1999), with permission from Elsevier; reprinted from Geochimica et Cosmochimica Acta, 53(8), Millero FJ, Sotolongo S, The oxidation of Fe(II) with H2O2 in seawater, 1867–1873. Copyright (1989), with permission from Elsevier; reprinted (adapted) with permission from Southworth BA, Voelker BM, Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid, Environmental Science & Technology, 37(6), 1130–1136. Copyright (2003) American Chemical Society; reprinted with permission from Zepp RG, Faust BC, Hoigné J, Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: The Photo-Fenton reaction, Environmental Science & Technology, 26 (2), 313–319. Copyright (1992) American Chemical Society; and reprinted from Water Research, 39(13), Jeong J, Yoon J, pH effect on OH radical production in photo/ferrioxalate system, 2893–2900. Copyright (2005), with permission from Elsevier; reprinted (adapted) with permission from Balmer ME, Sulzberger B, Atrazine degradation in irradiated iron/oxalate system: effects of pH and oxalate, Environmental Science & Technology, 33 (14), 2418–2424. Copyright (1999) American Chemical Society; Springer and the original Journal of Atmospheric Chemistry, 10, 1990, 411–425, Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H2O2 at 308 and 351 nm in the temperature range 278–353 K, Journal of Atmospheric Chemistry, Zellner R, Exner M, Herrmann H, with kind permission from Springer Science and Business Media; reprinted from Journal of Electrostatics, 39(3), Sun B, Sato M, Sid Clements J, Optical study of active species produced by a pulsed streamer corona discharge in water, 189–202, Copyright (1997), with permission from Elsevier; and Copyright (2004) by The Japan Society for Analytical Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan M. G. Mostofa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mostofa, K.M.G. et al. (2013). Photoinduced Generation of Hydroxyl Radical in Natural Waters. In: Mostofa, K., Yoshioka, T., Mottaleb, A., Vione, D. (eds) Photobiogeochemistry of Organic Matter. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32223-5_3

Download citation

Publish with us

Policies and ethics