Skip to main content

Thermoset Three-Component Composite Systems Using Carbon Nanotubes

  • Chapter
  • First Online:
Book cover NanoCarbon 2011

Part of the book series: Carbon Nanostructures ((CARBON,volume 3))

  • 662 Accesses

Abstract

In this chapter, a brief review on three-component composites comprised of a (micro) fibrous reinforcement and a thermoset polymer resin filled with nanoparticles is presented. For this type of composite, carbon nanotubes (CNT) and carbon nanofibers are more commonly used and the focus usually lies on resin-dominated properties, such as interlaminar shear strength, and interlaminar fracture toughness. Many three-component systems comprised of fiber/epoxy/CNT have been produced using resin transfer molding (RTM) or VARTM. However, there are major difficulties associated with the impregnation of a dry fibrous reinforcement using a highly viscous suspension of resin/nanofiller, especially for high content of nanofillers or highly packed fibrous systems. In such harsh circumstances, an alternative and recent approach to enable processing comprises the production/use of three-component prepregs containing nanofillers, although they are usually associated with high cost. The presented case study focused on an alternative route to produce glass-fiber composites with high content of CNT via RTM. A practical, low-cost and effective methodology for the direct deposition of an acetone/CNT/epoxy suspension on glass-fiber cloths was developed, achieving up to 4.15 % wt. in overall CNT content in the composite. The mechanical properties of the composites produced with non-functionalized CNT increased, in general, up to 10 % compared to the reference epoxy/glass-fiber composite. However, the high CNT content obtained was of uttermost importance for the development of electromagnetic characteristics on the material, absorbing much of the radiation in the microwave frequency range. The reflectivity properties reached a maximum of approximately - 14 dB (c.a. 95 % of electromagnetic absorption) and this excellent performance was obtained using a comparatively low cost (glass fiber) and thin (»2.2 mm) polymer composite material. Thus, the developed composites showed great potential to be used as microwave-absorption materials, replacing conventional ones employed for this aim. With further improvement in the manufacturing process, these materials could become of interest as high performance composites in a wide range of engineering applications, from telecommunications to aerospace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boeger, L., Wichmann, M.H.G., Meyer, L.O., Schulte, K.: Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos. Sci. Technol. 68, 1886–1894 (2008). doi:10.1016/j.compscitech.2008.01.001

    Article  CAS  Google Scholar 

  2. Chang, M.S.: An investigation on the dynamic behavior and thermal properties of MWCNTs/FRP laminate composites. J. Reinf. Plast. Comp. 29, 3593–3599 (2010). doi:10.1177/0731684410379510

    Article  CAS  Google Scholar 

  3. Chen, W.J., Li, Y.L., Chiang, C.L., Kuan, C.F., Kuan, H.C., Lin, T.T., Yip, M.C.: Preparation and characterization of carbon nanotubes/epoxy resin nano-prepreg for nanocomposites. J. Phys. Chem. Solids 71, 431–435 (2010). doi:10.1016/j.jpcs.2009.12.006

    Article  CAS  Google Scholar 

  4. De Marco, A.M., De Villoria, R.G.: Manufacturing nanoreinforcement prepreg used for e.g. monitoring damage in structures, electrostatic shielding, anti-lightning systems in wind generators, and surface finishing, involves mixing nanoreinforcement with resin. Patent EP2000494-A1 (2009)

    Google Scholar 

  5. Fan, Z.H., Hsiao, K.T., Advani, S.G.: Experimental investigation of dispersion during flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media. Carbon 42, 871–876 (2004). doi:10.1016/j.carbon.2004.01.067

    Article  CAS  Google Scholar 

  6. Fan, Z.H., Santare, M.H., Advani, S.G.: Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Compos. Part A-Appl. S. 39, 540–554 (2008). doi:10.1016/j.compositesa.2007.11.013

    Article  Google Scholar 

  7. Folgueras, L.C., Alves, M.A., Rezende, M.C.: Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties. J. Aerosp. Technol. Manag. 2, 63–70 (2010). doi:10.5028/jatm.2010.02016370

    Article  CAS  Google Scholar 

  8. Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., van Vuure, A.W., Lomov, S.V., Verpoest, I.: Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos. Sci. Technol. 70, 1346–1352 (2010). doi:10.1016/j.compscitech.2010.04.010

    Article  CAS  Google Scholar 

  9. Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S.V., van Vuure, A.W., Gorbatikh, L., Moldenaers, P., Verpoest, I.: Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 47, 2914–2923 (2009). doi:10.1016/j.carbon.2009.06.039

    Article  CAS  Google Scholar 

  10. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Bauhofer, W., Schulte, K.: Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos. Part A-Appl. S. 36, 1525–1535 (2005). doi:10.1016/j.compositesa.2005.02.007

    Article  Google Scholar 

  11. Kim, H.S., Hahn, H.T.: Graphite fiber composites interlayered with single-walled carbon nanotubes. J. Compos. Mater. 45, 1109–1120 (2011). doi:10.1177/0021998311402726

    Article  CAS  Google Scholar 

  12. Kim, M., Park, Y.-B., Okoli, O.I., Zhang, C.: Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos. Sci. Technol. 69, 335–342 (2009). doi:10.1016/j.compscitech.2008.10.019

    Article  CAS  Google Scholar 

  13. Lee, O.K.H., Kim, S.S., Lima, Y.S.: Conduction noise absorption by fiber-reinforced epoxy composites with carbon nanotubes. J. Magn. Magn. Mater. 323, 587–591 (2011). doi:10.1016/j.jmmm.2010.10.018

    Article  CAS  Google Scholar 

  14. Loos, M.R., Coelho, L.A.F., Pezzin, S.H., Amico, S.C.: The effect of acetone addition on the properties of epoxy. Polimeros 18, 76–80 (2008). doi:10.1590/S0104-14282008000100015

    Article  CAS  Google Scholar 

  15. Lui, S.D., Stevenson, J.F., Vacanti, D.C., Vicanti, D.C., Lui, S.C.D.: Multimaterial prepreg sheet for forming electronic chassis and for athletic equipment such as vaulting poles or golf clubs, comprises braid or woven fabric sheet of predetermined length and width. Patent US2009/0095523A1 (2009)

    Google Scholar 

  16. Sadeghian, R., Gangireddy, S., Minaie, B., Hsiao, K.T.: Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Compos. Part A-Appl. S. 37, 1787–1795 (2006). doi:10.1016/j.compositesa.2005.09.010

    Article  Google Scholar 

  17. Seyhan, A.T., Tanoglu, M., Schulte, K.: Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Eng. Fract. Mech. 75, 5151–5162 (2008). doi:10.1016/j.engfracmech.2008.08.003

    Article  Google Scholar 

  18. Suave, J., Coelho, L.A.F., Amico, S.C., Pezzin, S.H.: Effect of sonication on thermo-mechanical properties of epoxy nanocomposites with carboxylated-SWNT. Mat. Sci. Eng. A-Struct. 509, 57–62 (2009). doi:10.1016/j.msea.2009.01.036

    Article  Google Scholar 

  19. Wichmann, M.H.G., Sumfleth, J., Gojny, F.H., Quaresimin, M., Fiedler, B., Schulte, K.: Glass-fibre-reinforced composites with enhanced mechanical and electrical properties—benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mech. 73, 2346–2359 (2006). doi:10.1016/j.engfracmech.2006.05.015

    Article  Google Scholar 

  20. Zhou, Y., Pervin, F., Lewis, L., Jeelani, S.: Experimental study on the thermal and mechanical properties of Multi-walled carbon nanotube-reinforced epoxy. Mat. Sci. Eng. A-Struct. 452, 657–664 (2007). doi:10.1016/j.msea.2006.11.066

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Mirabel Rezende (IAE/CTA) for the reflectivity measurements, Dr. Ademir Zattera (UCS) for the short-beam testing and Giulio Toso for help with the moldings. The authors would also like to thank CNPq, CAPES and FAPERGS for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

da Silva, L.V., Amico, S.C., Pezzin, S.H., Coelho, L.A.F., Becker, C.M. (2013). Thermoset Three-Component Composite Systems Using Carbon Nanotubes. In: Avellaneda, C. (eds) NanoCarbon 2011. Carbon Nanostructures, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31960-0_8

Download citation

Publish with us

Policies and ethics