Skip to main content

The Use of Nanostructures for DNA Transfection

  • Chapter
  • First Online:
NanoCarbon 2011

Part of the book series: Carbon Nanostructures ((CARBON,volume 3))

  • 671 Accesses

Abstract

The interaction between nanostructured materials and living systems is of fundamental and practical interest and will determine the biocompatibility, potential utilities and applications of novel nanomaterials in biological settings. The pursuit of new types of molecular transporters is an active area of research, due to the high impermeability of cell membranes and other biological barriers to foreign substances and the need for intercellular delivery of molecules via cell-penetrating transporter for drug, gene or protein therapeutics. Here, is described the novel nanostructure-based transfection systems. The transfection uses of nanopolymers, nanoparticles and nanotubes are the main focus of this review. In addition are described the technique called NanoSMGT that uses nanostructures for DNA transfection in sperm cells that could be used for transgenic animal generation or human gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anzar, M., Buhr, M.M.: Spontaneous uptake of exogenous DNA by bull spermatozoa. Theriogenology 65, 683–690 (2006). doi:10.1016/j.theriogenology.2005.06.009

    Article  CAS  Google Scholar 

  2. Aoki, T., Miyauchi, K., Urano, E., Ichikawa, R., Komano, J.: Protein transduction by pseudotyped lentivirus-like nanoparticles. Gene Ther. 18, 936–941 (2011). doi:10.1038/gt.2011.38

    Article  CAS  Google Scholar 

  3. Baldi, L., Hacker, D.L., Meerschman, C., Wurm, F.M.: Large-scale transfection of Mammalian cells. Methods Mol. Biol. 801, 13–26 (2012). doi:10.1007/978-1-61779-352-3_2

    Article  CAS  Google Scholar 

  4. Berry, C.C.: Intracellular delivery of nanoparticles via the HIV-1 tat peptide. Nanomedicine (Lond) 3, 357–365 (2008). doi:10.2217/17435889.3.3.357

    Article  CAS  Google Scholar 

  5. Bilensoy, E.: Cationic nanoparticles for cancer therapy. Expert Opin Drug Deliv 7, 795–809 (2010). doi:10(1517/17425247).2010.485983

    Article  CAS  Google Scholar 

  6. Campos, V.F., Amaral, M.G., Seixas, F.K., Pouey, J.L., Selau, L.P., Dellagostin, O.A., Deschamps, J.C., Collares, T.: Exogenous DNA uptake by South American catfish (Rhamdia quelen) spermatozoa after seminal plasma removal. Anim. Reprod. Sci. 126, 136–141 (2011). doi:10.1016/j.anireprosci.2011.05.004

    Article  CAS  Google Scholar 

  7. Campos, V.F., de Leon, P.M., Komninou, E.R., Dellagostin, O.A., Deschamps, J.C., Seixas, F.K., Collares, T.: NanoSMGT: Transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency. Theriogenology 76, 1552–1560 (2011). doi:10.1016/j.theriogenology.2011.06.027

    Article  CAS  Google Scholar 

  8. Campos, VF., Komninou, ER., Urtiaga, G., de Leon, PM., Seixas, FK., Dellagostin, OA., Deschamps, JC., Collares, T.: NanoSMGT: transfection of exogenous DNA on sex-sorted bovine sperm using nanopolymer. Theriogenology 75, 1476–1481. (2011c) 10.1016/j.theriogenology.2011.01.009

  9. Chen, C.C., Liu, Y.C., Wu, C.H., Yeh, C.C., Su, M.T., Wu, Y.C.: Preparation of fluorescent silica nanotubes and their application in gene delivery. Adv. Mater. 17, 404 (2005). doi:10.1002/adma.200400966

    Article  CAS  Google Scholar 

  10. Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science 282, 95–98 (1998)

    Article  CAS  Google Scholar 

  11. Cheng, J., Fernando, K.A., Veca, L.M., Sun, Y.P., Lamond, A.I., Lam, Y.W., Cheng, S.H.: Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano 2, 2085–2094 (2008). doi:10.1021/nn800461u

    Article  CAS  Google Scholar 

  12. Collares, T., Campos, V.F., Leon, P.M.M., Cavalcanti, P.V., Amaral, M.G., Dellagostin, O.A., Deschamps, J.C., Seixas, F.K.: Transgene transmission in chickens by sperm-mediated gene transfer after seminal plasma removal and exogenous DNA treated with dimethylsulfoxide or N, N-dimethylacetamide. J. Biosci. 36, 613–620 (2011). doi:10.1007/s12038-011-9098-x

    Article  CAS  Google Scholar 

  13. Collares, T., Campos, V.F., Seixas, F.K., Cavalcanti, P.V., Dellagostin, O.A., Moreira, H.L., Deschamps, J.C.: Transgene transmission in South American catfish (Rhamdia quelen) larvae by sperm-mediated gene transfer. J. Biosci. 35, 39–47 (2010). doi:10.1007/s12038-010-0006-6

    Article  CAS  Google Scholar 

  14. Dai, Z., Gjetting, T., Mattebjerg, M.A., Wu, C., Andresen, T.L.: Elucidating the interplay between DNA-condensing and free polycations in gene transfection through a mechanistic study of linear and branched PEI. Biomaterials 32, 8626–8634 (2011). doi:10.1016/j.biomaterials.2011.07.044

    Article  CAS  Google Scholar 

  15. de la Fuente, J.M., Berry, C.C., Riehle, M.O., Curtis, A.S.: Nanoparticle targeting at cells. Langmuir 22, 3286–3293 (2006). doi:10.1021/la053029v

    Article  Google Scholar 

  16. Dittrich, M., Heinze, M., Wolk, C., Funari, S.S., Dobner, B., Mohwald, H., Brezesinski, G.: Structure-function relationships of new lipids designed for DNA transfection. Chem. Phys. Chem 12, 2328–2337 (2011). doi:10.1002/cphc.201100065

    Article  CAS  Google Scholar 

  17. Douglas, S.J., Davis, S.S., Illum, L.: Nanoparticles in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 3, 233–261 (1987)

    CAS  Google Scholar 

  18. Fischer, D., Bieber, T., Li, Y., Elsasser, H.P., Kissel, T.: A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16, 1273–1279 (1999)

    Article  CAS  Google Scholar 

  19. Garcia-Vazquez, F.A., Ruiz, S., Matas, C., Izquierdo-Rico, M.J., Grullon, L.A., De, O.A., Vieira, L., Aviles-Lopez, K., Gutierrez-Adan, A., Gadea, J.: Production of transgenic piglets using ICSI-sperm-mediated gene transfer in combination with recombinase RecA. Reproduction 140, 259–272 (2010). doi:10.1530/REP-10-0129

    Article  CAS  Google Scholar 

  20. Gersting, S.W., Schillinger, U., Lausier, J., Nicklaus, P., Rudolph, C., Plank, C., Reinhardt, D., Rosenecker, J.: Gene delivery to respiratory epithelial cells by magnetofection. J Gene Med 6, 913–922 (2004). doi:10.1002/jgm.569

    Article  CAS  Google Scholar 

  21. Harel-Markowitz, E., Gurevich, M., Shore, L.S., Katz, A., Stram, Y., Shemesh, M.: Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating hormone. Biol. Reprod. 80, 1046–1052 (2009). doi:10.1095/biolreprod.108.070375

    Article  CAS  Google Scholar 

  22. Hosseinkhani, H., Azzam, T., Tabata, Y., Domb, A.J.: Dextran-spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection. Gene Ther. 11, 194–203 (2004). doi:10.1038/sj.gt.3302159

    Article  CAS  Google Scholar 

  23. Ino, K., Kawasumi, T., Ito, A., Honda, H.: Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet. Biotechnol. Bioeng. 100, 168–176 (2008). doi:10.1002/bit.21738

    Article  CAS  Google Scholar 

  24. Kadota, S., Kanayama, T., Miyajima, N., Takeuchi, K., Nagata, K.: Enhancing of measles virus infection by magnetofection. J. Virol. Methods 128, 61–66 (2005). doi:10.1016/j.jviromet.2005.04.003

    Article  CAS  Google Scholar 

  25. Kam, N.W., Dai, H.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026 (2005). doi:10.1021/ja050062v

    Article  CAS  Google Scholar 

  26. Kam, N.W., Liu, Z., Dai, H.: Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127, 12492–12493 (2005). doi:10.1021/ja053962k

    Article  CAS  Google Scholar 

  27. Kang, J.H., Hakimov, H., Ruiz, A., Friendship, R.M., Buhr, M., Golovan, S.P.: The negative effects of exogenous DNA binding on porcine spermatozoa are caused by removal of seminal fluid. Theriogenology 70, 1288–1296 (2008). doi:10.1016/j.theriogenology.2008.06.011

    Article  CAS  Google Scholar 

  28. Kim, T.S., Lee, S.H., Gang, G.T., Lee, Y.S., Kim, S.U., Koo, D.B., Shin, M.Y., Park, C.K., Lee, D.S.: Exogenous DNA uptake of boar spermatozoa by a magnetic nanoparticle vector system. Reprod. Domest. Anim. 45, e201–e206 (2010). doi:10.1111/j.1439-0531.2009.01516.x

    Article  CAS  Google Scholar 

  29. Kong, D., Cui, Y.: Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat Chem 3, 845–849 (2011). doi:1038/nchem.1171

    Article  CAS  Google Scholar 

  30. Lanes, C.F., Sampaio, L.A., Marins, L.F.: Evaluation of DNase activity in seminal plasma and uptake of exogenous DNA by spermatozoa of the Brazilian flounder Paralichthys orbignyanus. Theriogenology 71, 525–533 (2009). doi:10.1016/j.theriogenology.2008.08.019

    Article  CAS  Google Scholar 

  31. Lappalainen, K., Jaaskelainen, I., Syrjanen, K., Urtti, A., Syrjanen, S.: Comparison of cell proliferation and toxicity assays using two cationic liposomes. Pharm. Res. 11, 1127–1131 (1994)

    Article  CAS  Google Scholar 

  32. Lay, C.L., Liu, J., Liu, Y.: Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev. Med. Devices 8, 561–566 (2011). doi:10.1586/erd.11.34

    Article  CAS  Google Scholar 

  33. Levis, S.R., Deasy, P.B.: Characterisation of halloysite for use as a microtubular drug delivery system. Int. J. Pharm. 243, 125–134 (2002). doi:S0378517302002740

    Article  CAS  Google Scholar 

  34. Li, C., Guo, T., Zhou, D., Hu, Y., Zhou, H., Wang, S., Chen, J., Zhang, Z.: A novel glutathione modified chitosan conjugate for efficient gene delivery. J Control Release 154, 177–188 (2011). doi:10.1016/j.jconrel.2011.06.007

    Article  CAS  Google Scholar 

  35. Liu, Z., Zheng, M., Meng, F., Zhong, Z.: Non-viral gene transfection in vitro using endosomal pH-sensitive reversibly hydrophobilized polyethylenimine. Biomaterials 32, 9109–9119 (2011). doi:10.1016/j.biomaterials.2011.08.017

    Article  CAS  Google Scholar 

  36. Makhluf, S.B., Abu-Mukh, R., Rubinstein, S., Breitbart, H., Gedanken, A.: Modified PVA-Fe3O4 nanoparticles as protein carriers into sperm cells. Small 4, 1453–1458 (2008). doi:10.1002/smll.200701308

    Article  Google Scholar 

  37. Qin, W., Yang, K., Tang, H., Tan, L., Xie, Q., Ma, M., Zhang, Y., Yao, S.: Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf. B Biointerfaces 84, 206–213 (2011). doi:10.1016/j.colsurfb.2011.01.001

    Article  CAS  Google Scholar 

  38. Sajja, H.K., East, M.P., Mao, H., Wang, Y.A., Nie, S., Yang, L.: Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr. Drug Discov. Technol. 6, 43–51 (2009)

    Article  CAS  Google Scholar 

  39. Shimamura, M., Morishita, R.: Naked plasmid DNA for gene therapy. Curr. Gene Ther. 11, 433, (2011) BSP/CGT/E-Pub/00089

    Google Scholar 

  40. Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Briand, J.P., Prato, M., Bianco, A., Kostarelos, K.: Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388–4396 (2005). doi:10.1021/ja0441561

    Article  CAS  Google Scholar 

  41. Smith, K., Spadafora, C.: Sperm-mediated gene transfer: applications and implications. BioEssays 27, 551–562 (2005). doi:10.1002/bies.20211

    Article  CAS  Google Scholar 

  42. Song, H.P., Yang, J.Y., Lo, S.L., Wang, Y., Fan, W.M., Tang, X.S., Xue, J.M., Wang, S.: Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Biomaterials 31, 769–778 (2010). doi:10.1016/j.biomaterials.2009.09.085

    Article  CAS  Google Scholar 

  43. Spadafora, C.: Sperm-mediated gene transfer: mechanisms and implications. Soc. Reprod. Fertil. Suppl. 65, 459–467 (2007)

    CAS  Google Scholar 

  44. Vergaro, V., Abdullayev, E., Lvov, Y.M., Zeitoun, A., Cingolani, R., Rinaldi, R., Leporatti, S.: Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 11, 820–826 (2010). doi:10.1021/bm9014446

    Article  CAS  Google Scholar 

  45. Wu, Y., Phillips, J.A., Liu, H., Yang, R., Tan, W.: Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2, 2023–2028 (2008). doi:10.1021/nn800325a

    Article  CAS  Google Scholar 

  46. Yao, H., Ng, S.S., Tucker, W.O., Tsang, Y.K., Man, K., Wang, X.M., Chow, B.K., Kung, H.F., Tang, G.P., Lin, M.C.: The gene transfection efficiency of a folate-PEI600-cyclodextrin nanopolymer. Biomaterials 30, 5793–5803 (2009). doi:10.1016/j.biomaterials.2009.06.051

    Article  CAS  Google Scholar 

  47. Zecchin, D., Di, N.F.: Transfection and DNA-mediated gene transfer. Methods Mol. Biol. 731, 435–450 (2011). doi:10.1007/978-1-61779-080-5_35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius Farias Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Campos, V.F., Yurgel, V., Seixas, F.K., Collares, T. (2013). The Use of Nanostructures for DNA Transfection. In: Avellaneda, C. (eds) NanoCarbon 2011. Carbon Nanostructures, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31960-0_4

Download citation

Publish with us

Policies and ethics