Skip to main content

Motivation for the Finite Element Method

  • Chapter
  • First Online:
  • 5109 Accesses

Abstract

The approach to the finite element method can be derived from different motivations. Essentially there are three ways:

  • a rather descriptive way, which has its roots in the engineering working method,

  • a physical or

  • mathematically motivated approach.

Depending on the perspective, different formulations result, which however all result in a common principal equation of the finite element method. The different formulations will be elaborated in detail based on the following descriptions:

  • matrix methods,

  • physically based working and energy methods and

  • weighted residual method.

The finite element method is used to solve different physical problems. Here solely finite element formulations related to structural mechanics are considered [1, 57, 912].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The additional index ‘e’ is to be dropped at displacements since the nodal displacement is identical for each linked element in the displacement method.

  2. 2.

    In the one-dimensional case the differential operator simplifies to the derivative \(\tfrac{\text{d}}{\text{d} x}\).

  3. 3.

    The index ‘e’ of the element coordinate is neglected in the following—in the case it does not affect the understanding.

  4. 4.

    Since the static boundary conditions are implicitly integrated in the overall potential, the shape functions do not have to fulfill those. However, if the shape functions fulfill the static boundary conditions additionally, an even more precise approximation can be achieved.

  5. 5.

    Usually a separate local coordinate system \(0 \le x^\text{e} \le L^\text{e}\) is introduced for each element ‘e’. The coordinate in Eq. (2.88) is then referred to as global coordinate and receives the symbol \(X\).

References

  1. Betten J (2001) Kontinuumsmechanik: Elastisches und inelastisches Verhalten isotroper und anisotroper Stoffe. Springer-Verlag, Berlin

    Google Scholar 

  2. Betten J (2004) Finite Elemente für Ingenieure 1: Grundlagen. Matrixmethoden, Elastisches Kontinuum, Springer-Verlag, Berlin

    Google Scholar 

  3. Betten J (2004) Finite Elemente für Ingenieure 2: Variationsrechnung, Energiemethoden. Näherungsverfahren, Nichtlinearitäten, Numerische Integrationen, Springer-Verlag, Berlin

    Google Scholar 

  4. Brebbia CA, Telles JCF, Wrobel LC (1984) Boundary Element Techniques: Theory and Applications. Springer-Verlag, Berlin

    Google Scholar 

  5. Gross D, Hauger W, Schröder J, Wall WA (2009) Technische Mechanik 2: Elastostatik. Springer-Verlag, Berlin

    Google Scholar 

  6. Gross D, Hauger W, Schröder J, Werner EA (2008) Hydromechanik. Elemente der Höheren Mechanik, Numerische Methoden, Springer-Verlag, Berlin

    Google Scholar 

  7. Klein B (2000) FEM. Grundlagen und Anwendungen der Finite-Elemente-Methode, Vieweg-Verlag, Wiesbaden

    Google Scholar 

  8. Kuhn G, Winter W (1993) Skriptum Festigkeitslehre Universität Erlangen-Nürnberg

    Google Scholar 

  9. Kwon YW, Bang H (2000) The Finite Element Method Using MATLAB. CRC Press, Boca Raton

    Google Scholar 

  10. Oden JT, Reddy JN (1976) Variational methods in theoretical mechanics. Springer-Verlag, Berlin

    Google Scholar 

  11. Steinbuch R (1998) Finite Elemente - Ein Einstieg. Springer-Verlag, Berlin

    Google Scholar 

  12. Szabó I (1996) Geschichte der mechanischen Prinzipien und ihrer wichtigsten Anwendungen. Birkhäuser Verlag, Basel

    Google Scholar 

  13. Zienkiewicz OC, Taylor RL (2000) The Finite Element Method Volume 1: The Basis. Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Öchsner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Öchsner, A., Merkel, M. (2013). Motivation for the Finite Element Method. In: One-Dimensional Finite Elements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31797-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31797-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31796-5

  • Online ISBN: 978-3-642-31797-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics