Skip to main content
Book cover

Nanoenergy pp 153–177Cite as

Nanocomposites from V2O5 and Lithium Ion Batteries

  • Chapter
  • First Online:
  • 1493 Accesses

Abstract

In this chapter, V2O5 xerogel and nanocomposites of V2O5 and polymers as well as the charge storage properties are described and discussed, aiming their use as cathode for lithium ion batteries. First, the different synthesis methods are presented, emphasizing the sol–gel methods via vanadates and vanadium alkoxides. Structural aspects are briefly mentioned to a better comprehension of lithium ion insertion/deinsertion, which influence on the electrochemical properties, and consequently, on the charge capacity of electrodes formed of V2O5. Nanostructured materials such as nanorolls, nanobelts, nanowires, and ordered nanorods arrays have been prepared and studied to increase the specific capacity, energy density, and power density. Moreover, the intimate contact between the nanocomposite components can also guarantee the enhancement of these properties so that these materials can be used in lithium ion batteries. Intermolecular interactions are also investigated to explain the performance of these positive electrodes. Various polymers have been used in these nanomaterials to increase the electronic conductivity as well as the ionic diffusion, and/or electrochemical stability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cheng F, Tao Z, Liang J, Chen J (2008) Chem Mater 20:667

    Article  Google Scholar 

  2. Tarascon J-M, Armand M (2001) Nature 414:359

    Article  Google Scholar 

  3. Bruce PG, Scrosati B, Tarascon J-M (2008) Angew Chem Int Ed 47:2930

    Article  Google Scholar 

  4. Wang Y, Cao G (2008) Adv Mater 20:2251

    Article  Google Scholar 

  5. Liu C, Li F, Ma LP, Cheng H-M (2010) Adv Mater 22:E28

    Article  Google Scholar 

  6. Li H, Wang Z, Xeng L, Huang X (2009) Adv Mater 21:4593

    Article  Google Scholar 

  7. Guo Y-G, Hu J-S, Wan L-J (2008) Adv Mater 20:2878

    Article  Google Scholar 

  8. Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovkii YF, Kotomin EA, Maier J (2006) J Power Sources 159:171

    Article  Google Scholar 

  9. Armand M, Tarascon J-M (2008) Nature 451:652

    Article  Google Scholar 

  10. Whittingham MS (2004) Chem Rev 104:4271

    Article  Google Scholar 

  11. Tarascon J-M (2010) Philosophical Transactions of the Royal Society A: Mathematical. Physics & Engineering Science 368:3227

    Article  Google Scholar 

  12. Brodd RJ, Bullock KR, Leising RA, Middaugh RL, Miller JR, Takeuchi E (2004) J Electrochem Soc 151:K1

    Article  Google Scholar 

  13. Whittingham MS (1976) Science 192:1126

    Article  Google Scholar 

  14. Rao BML, Francis RW, Christopher HA (1977) J Electrochem Soc 124:1490

    Article  Google Scholar 

  15. Nagaura T, Tozawa K (1990) Prog Batteries Solar Cells 9:209

    Google Scholar 

  16. Ozawa K (1994) Solid State Ion 69:212

    Article  Google Scholar 

  17. Goodenough JB, Mizuchima K (1981) U.S. Patent 4,302,518

    Google Scholar 

  18. Ohzuku T (1995) Lithium batteries: new materials, developments and perspectives. In: Pistoia G (ed), vol. 5, 2a Ed, p 239, Elsevier, Amsterdam

    Google Scholar 

  19. Tarascon JM, Armand M (2001) Nature 414:359–367

    Google Scholar 

  20. Livage J (1991) Chem Mater 3:578

    Article  Google Scholar 

  21. Pereira-Ramos JP, Baffier N, Pistoia G (1995) Lithium batteries: new materials, developments and perspectives. In: Pistoia G (ed), vol. 5, 2a Ed, p 281, Elsevier, Amsterdam

    Google Scholar 

  22. Manthiram A, Kim J (1998) Chem Mater 10:2895

    Article  Google Scholar 

  23. Owens BB, Smyrl WH, Xu JJ (1999) J Power Sources 81:150

    Article  Google Scholar 

  24. Whittingham MS (1976) J Electrochem Soc 123:315

    Article  Google Scholar 

  25. Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) J Mater Chem 19:2526

    Article  Google Scholar 

  26. Ostermann W (1922) Wiss Ind Hamburg 1:17

    Google Scholar 

  27. Müller E, Chem Z (1911) Ind Kolloide 8:302

    Article  Google Scholar 

  28. Gharbi N, R’Kha C, Ballutaud D, Michaud M, Livage J, Audiere JP, Shiffmacher G, Non-Cryst J (1981) Solids 46:247

    Google Scholar 

  29. Sanchez C, Livage J, Audière JP, Madi A, Non-Cryst J (1984) Solids 65:285

    Google Scholar 

  30. Kittaka S, Sasaki S, Ogawa N, Uchida N (1988) J Solis State Chem 76:40

    Article  Google Scholar 

  31. Livage J (1999) Coord Chem Rev 190:391

    Article  Google Scholar 

  32. Legendre JJ, Livage J (1983) J Colloid Interface Sci 94:75

    Article  Google Scholar 

  33. Pelletier O, Davidson P, Bourgaux C, Coulon C, Regnault S, Livage J (2000) Langmuir 16:5295

    Article  Google Scholar 

  34. Livage J, Henry M, Sanchez C (1988) Prog Solid St Chem 18:259

    Article  Google Scholar 

  35. Legendre JJ, Livage J (1983) J Coll Int Sci 94:75

    Article  Google Scholar 

  36. Legendre JJ, Livage J (1983) J Coll Bit Sci 94:84

    Google Scholar 

  37. Yao T, Oka Y, Yamamoto N (1992) Mater Res Bull 116:279

    Google Scholar 

  38. Giorgetti M, Passerini S, Smyrl WH (2000) Inorg Chem 39:1514

    Article  Google Scholar 

  39. Bullot J, Gallais O, Gauthier M, Livage J (1980) Appl Phys Lett 36:986

    Article  Google Scholar 

  40. Bullot J, Cordier P, Gallais O, Gauthier M, Livage J (1981) Phys Stat Sol 68:357

    Article  Google Scholar 

  41. Sanchez C, Morineau R, Livage J (1983) Phys Stat Sol 76:661

    Article  Google Scholar 

  42. Sanchez C, Babonneau F, Morineau R, Livage J (1983) Phil Mag B 47:279

    Google Scholar 

  43. Livage J (1996) Solid States Ion 86:935

    Article  Google Scholar 

  44. Anaissi FJ Demets GJ–F, Alvarez EB, Politi MJ, Toma HE (2001) Electrochim Acta 47:441

    Google Scholar 

  45. Bardoux P, Morineau R, Livage J (1988) Solid State Ion 27:221

    Article  Google Scholar 

  46. Bullot J, Cordier P, Gallais O, Gauthier M, Non-Cryst J (1984) Solids 68:135

    Google Scholar 

  47. Baddour R, Pereira-Ramos JP, Messina R, Perichon J (1991) J Electroanal Chem 314:81

    Article  Google Scholar 

  48. Tipton AL, Passerini S, Owens BB, Smyrl WH (1996) J Electrochem Soc 143:3473

    Article  Google Scholar 

  49. Park H–K, Smyrl WH Ward MD (1995) J Electrochem Soc 142:1068

    Google Scholar 

  50. Mège S, Levieux Y, Ansart F, Savariault JM, Rousset A (2000) J Appl Electrochem 30:657

    Article  Google Scholar 

  51. Parent MJ, Passerini S, Owens BB, Smyrl WH (1999) J Electrochem Soc 146:1346

    Article  Google Scholar 

  52. Dong W, Rolison DR, Dunn B (2000) Electrochem Solid State Lett 3:457

    Article  Google Scholar 

  53. Park HK, Smyrl WH (1994) J Electrochem Soc 141:L25

    Article  Google Scholar 

  54. Le DB, Passerini S, Tipton AL, Owens BB, Smyrl WH (1995) J Electrochem Soc 142:L102

    Article  Google Scholar 

  55. Owens BB, Passerini S, Smyrl WH (1999) Electrochim Acta 45:215

    Article  Google Scholar 

  56. Passerini S, Smyrl WH, Berrettoni M, Tossici R, Rosolen M, Marassi R, Decker F (1996) Solid State Ion 90:5

    Article  Google Scholar 

  57. Le DB, Passerini S, Guo J, Ressler J, Owens BB, Smyrl WH (1996) J Electrochem Soc 143:2099

    Article  Google Scholar 

  58. Lemordant D, Bouhaouss A, Aldebert P, Baffier N (1986) J Chim Phys 83:105

    Google Scholar 

  59. Hupp J (2001) Interface 10:21

    Google Scholar 

  60. Lu Y, Lang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Nature 410:913

    Article  Google Scholar 

  61. Chadwick AV (2000) Nature 408:925

    Article  Google Scholar 

  62. Nazar LF, Goward G, Leroux F, Duncan M, Huang H, Kerr T, Gaubicher J (2001) Intern. J Inorg Mater 3:191

    Article  Google Scholar 

  63. Bourgeat-Lami E (2002) J Nanosci Nanotech 2:1

    Article  Google Scholar 

  64. Maia DJ, De Paoli MA, Alves OL, Zarbin AJG, das Neves S Quim Nova 23 (2000) 204

    Google Scholar 

  65. Gimenez IF, Alves OL, Brazil J (1999) Chem Soc 10:167

    Google Scholar 

  66. Kryszewski M (2000) Synthetic Met 109:47

    Article  Google Scholar 

  67. Wang Y, Cao G (2006) Chem Mater 18:2787

    Article  Google Scholar 

  68. Patrissi CJ, Martini CR (1999) J Electrochem Soc 146:3176

    Article  Google Scholar 

  69. Spahr ME, Bitterli PS, Nesper R, Haas O, Novák P (1999) J Electrochem Soc 145:2780

    Article  Google Scholar 

  70. Wang Y, Takahashi K, Shang H, Cao G (1995) J Phys Chem B 109:3085

    Article  Google Scholar 

  71. Lee K, Wang Y, Cao GZ (2005) J Phys Chem B 109:16700

    Article  Google Scholar 

  72. Gangopadhyay R, De A (2000) Chem Mater 12:608

    Article  Google Scholar 

  73. Kerr TA, Wu H, Nazar LF (1996) Chem Mater 8:2005

    Article  Google Scholar 

  74. Nazar LF, Wu H, Power WP (1993) J Mater Chem 5:1985

    Article  Google Scholar 

  75. Kanatzidis MG, Marcy HO, McCarthy WJ, Kannewurf CR, Marks TJ (1989) Solid States Ion 32:594

    Article  Google Scholar 

  76. Maia DJ, Das Neves S, Alves OL, De Paoli MA (1999) Synth Met 102:1153

    Article  Google Scholar 

  77. Maia DJ, Alves OL, De Paoli MA (1997) Synth Met 90:37

    Google Scholar 

  78. Wu CG, DeGroot DC, Marcy HO, Schindler JL, Kannewurf CR, Bakas T, Papaefthymiou V, Hirpo W, Yesinowski JP, Liu YJ, Kanatzidis MG (1995) J Am Chem Soc 117:9229

    Google Scholar 

  79. Liu YJ, Kanatzidis MG (1995) Chem Mater 7:1525

    Google Scholar 

  80. Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP (1995) Adv Mater 7:154

    Article  Google Scholar 

  81. Oriakhi CO, Lerner MM (1996) Chem Mater 8:2016

    Article  Google Scholar 

  82. Kerr TA, Leroux F, Nazar LF (1998) Chem Mater 10:2588

    Article  Google Scholar 

  83. Schöllhorn R (1996) Chem Mater 8:1747

    Article  Google Scholar 

  84. Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, Rabinovich L, Sampath S (1997) Chem Mater 9:2354

    Article  Google Scholar 

  85. Harreld J, Wong HP, Dave BC, Dunn B, Nazar LF (1998) J Non-Cryst Solids 225:319

    Article  Google Scholar 

  86. Lira-Cantú M, Gómez-Romero P (1999) J Solid State Chem 147:601

    Article  Google Scholar 

  87. Oliveira HP, Graeff CFO, Brunello CA, Guerra EM (2000) J Non-Cryst Solids 273:193

    Article  Google Scholar 

  88. Posudievsky OY, Biskulova SA, Pokhodenko VD (2004) J Mater Chem 14:1419

    Article  Google Scholar 

  89. Guerra EM, Brunello CA, Graeff CFO, Oliveira HP (2002) J Solid State Chem 168:134

    Article  Google Scholar 

  90. Demets GJF, Toma HE (2003) Electrochem Commun 5:73

    Google Scholar 

  91. Yatabe T, Matsubayashi G (1996) J Mater Chem 6:1849

    Article  Google Scholar 

  92. Wang J, Gonsalves KE (1999) J Comb Chem 1:216

    Article  Google Scholar 

  93. Kanatzidis MG, Wu C-G, Marcy HO, Kannewurf CR (1989) J Am Chem Soc 111:4139

    Article  Google Scholar 

  94. Wu CG, Kanatzidis MG, Marcy HO, DeGroot DC, Kannewurf CR (1989) Polim Mater Sc. Eng 61:969

    Google Scholar 

  95. Liu YJ, DeGroot DC, Schindler JL, Kannewurf CR, Kanatzidis MG (1993) J Chem Soc Chem Commun 3:593

    Google Scholar 

  96. Wu C-G, DeGroot DC, Marcy HO, Schindler JL, Kannewurf CR, Liu Y-J, Hirpo W, Kanatzidis MG (1996) Chem Mat 8:1992

    Article  Google Scholar 

  97. Somani PR, Marimuthu R, Mandale AB (2001) Polymer 42:2991

    Article  Google Scholar 

  98. Ferreira M, Zucolotto V, Huguenin F, Torresi RM, Oliveira ON Jr (2002) J Nanosci Nanotech 2:29

    Article  Google Scholar 

  99. Ferreira M, Huguenin F, Zucolotto V, da Silva JEP, de Torresi SIC, Temperini MLA, Torresi RM, Oliveira ON Jr (2003) J Phys Chem B 107:8351

    Article  Google Scholar 

  100. Li ZF, Ruckenstein E (2002) Langmuir 18:6956

    Article  Google Scholar 

  101. Leroux F, Koene BE, Nazar LF (1996) J Electrochem Soc 143:L181

    Article  Google Scholar 

  102. Leurox F, Goward G, Power WP, Nazar LF (1997) J Electrochem Soc 144:3886

    Article  Google Scholar 

  103. Lira-Cantú M, Gómez-Romero P (1999) J Electrochem Soc 146:2029

    Article  Google Scholar 

  104. Kuwabata S, Idzu T, Martin CR, Yoneyama H (1998) J Electrochem Soc 145:2707

    Article  Google Scholar 

  105. Huguenin F, Torresi RM, Buttry DA (2002) J Electrochem Soc 149:A546

    Article  Google Scholar 

  106. Varela H, Torresi RM (2000) J Electrochem Soc 147:665

    Article  Google Scholar 

  107. Lira-Cantú M, Gómez-Romero P (1999) Int J Inorg Mat 1:111

    Article  Google Scholar 

  108. Huguenin F, Torresi RM, Buttry DA, da Silva JEP, de Torresi SIC (2001) Electrochem Acta 46:3555

    Article  Google Scholar 

  109. Varela H, Huguenin F, Malta M, Torresi RM (2002) Quim Nova 25:287

    Article  Google Scholar 

  110. McKinnon WR (1995) In: Solid State Electrochemistry; Bruce PG (ed) Cambridge University Press, Cambridge p 163

    Google Scholar 

  111. Huguenin F, Ticianelli EA, Torresi RM (2002) Electrochim Acta 47:3179

    Article  Google Scholar 

  112. Holland GP, Yarger JL, Buttry DA, Huguenin F, Torresi RM (2003) J Electrochem Soc 150:A1718

    Article  Google Scholar 

  113. Holland GP, Buttry DA, Yarger YL (2002) Chem Mater 14:3875

    Article  Google Scholar 

  114. Huguenin F, Torresi RM (2008) J Phys Chem C 112:2202

    Article  Google Scholar 

  115. Goward GR, Leroux F, Nazar LF (1998) Electrochim Acta 43:1307

    Article  Google Scholar 

  116. Wong HP, Dave BC, Leroux F, Harreld J, Dunn B, Nazar LF (1998) J Mater Chem 8:1019

    Article  Google Scholar 

  117. Huguenin F, Girotto EM, Torresi RM, Buttry DA (2002) J Electroanal Chem 536:37

    Article  Google Scholar 

  118. Harreld JH, Dunn B, Nazar LF (1999) Int J Inorg Mater 1:135

    Article  Google Scholar 

  119. Demets GJF, Anaissi FJ, Toma HE (2000) Electrochim Acta 46:547

    Article  Google Scholar 

  120. Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) J Power Sources 196:3331

    Article  Google Scholar 

  121. Murugan AV, Kale BB, Kwon C-W, Campet G, Vijayamohanan K (2001) J Mater Chem 11:2470

    Article  Google Scholar 

  122. Kwon CW, Murugan AV, Campet G, Portier J, Kale BB, Vijaymohanan K, Choy JH (2002) Electrochem Commun 4:384

    Google Scholar 

  123. Kuwubata S, Tomiyori M (2002) J Electrochem Soc 149:A988

    Article  Google Scholar 

  124. Ponzio EA, Benedetti TM, Torresi RM (2007) Electrochim Acta 52:4419

    Article  Google Scholar 

  125. Malta M, Torresi RM (2005) Electrochim Acta 50:5009

    Article  Google Scholar 

  126. Chun-Guey W, Jiunn-Yih H, Shui-Sheng H (2001) J Mater Chem 11:2061

    Article  Google Scholar 

  127. Huguenin F, Girotto EM, Ruggeri G, Torresi RM (2003) J Power Sources 114:133

    Article  Google Scholar 

  128. Wang GC, Zhao J, Li XW, Li CZ, Yuan WK (2008) Synth Met 159:366

    Article  Google Scholar 

  129. Liu M, Visco SJ, De Jonghe LC (1991) J Electrochem Soc 138:1891

    Article  Google Scholar 

  130. Shouji E, Buttry DA (1999) Langmuir 15:669

    Article  Google Scholar 

  131. Park NG, Ryu KS, Park YJ, Kang MG, Kim DK, Kang SG, Kim KM, Chang SH (2002) J Power Sources 103:273

    Google Scholar 

  132. Liu YJ, Schindler JL, Degroot DC, Kannewurf CR, Hirpo W, Kanatzidis MG (1996) Chem Mat 8:525

    Article  Google Scholar 

  133. Ruiz-Hitzky E, Aranda P, Casal B (1992) J Mater Chem 2:581

    Article  Google Scholar 

  134. Chen W, Xu Q, Hu YS, May LQ, Zhu QY (2002) J Mater Chem 12:1926

    Article  Google Scholar 

  135. Jin AP, Zhu QY, Chen W, Volkov VL, Zakharova GS, Liu HX, Zhou J, Xu Q (2007) Solid State Phenom 124:363

    Article  Google Scholar 

  136. Jin A, Chen W, Zhou Q, Yang Y, Volkov VL, Zakharova GS (2008) Solid State Ion 179:1256

    Article  Google Scholar 

  137. Lutkenhaus JL, Hammond PT (2007) Soft Mater 3:804

    Article  Google Scholar 

  138. Galiote NA, Huguenin F (2007) J Phys Chem C 111:14911

    Article  Google Scholar 

  139. Huguenin F, Ferreira M, Zucolotto V, Nart FC, Torresi RM, Oliveira ON (2004) Chem Mater 16:2293

    Article  Google Scholar 

  140. Huguenin F, Santos DS, Bassi A, Nart FC, Oliveira ON (2004) Adv Func Mater 14:985

    Article  Google Scholar 

  141. Huguenin F, Nart FC, Gonzalez ER, Oliveira ON (2004) J Phys Chem B 108:18919

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from FAPESP, CNPq, and Capes is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Huguenin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huguenin, F., Martins, A.R., Torresi, R.M. (2013). Nanocomposites from V2O5 and Lithium Ion Batteries. In: de Souza, F., Leite, E. (eds) Nanoenergy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31736-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31736-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31735-4

  • Online ISBN: 978-3-642-31736-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics