Skip to main content

Biofuel Cells: Bioelectrochemistry Applied to the Generation of Green Electricity

  • Chapter
  • First Online:
Nanoenergy

Abstract

Several studies published in the last decade have pointed to the use of enzymes and microorganisms in biocatalytic reactions to generate electricity. Enzymes and living organisms can be used in modified electrodes to build the so-called biofuel cells (BFCs). However, a deep understanding of the structure and biocatalytic properties after enzyme immobilization is still lacking because they are immobilized in the solid state and outside of their natural environment. Thus, based on biological molecules and nanostructure materials applied to BFCs, these current topics shall be reviewed here, and prospects for future development in these areas will be presented as well. Moreover, immobilization methodologies and enzyme stability systems that result in BFCs will also be presented. Finally, BFC power density and catalyst support will be widely discussed in this book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubenova Y, Mitov M (2010) Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry 78:57–61

    Article  Google Scholar 

  2. Giroud F, Gondran C, Gorgy K, Pellissier A, Lenouvel F, Cinquin P, Cosnier S (2010) A quinhydrone biofuel cell based on an enzyme-induced pH gradient. J Power Sour

    Google Scholar 

  3. Liu Y, Dong S (2007) A biofuel cell with enhanced power output by grape juice. Electrochem Commun 9:1423–1427

    Article  Google Scholar 

  4. Katz E, Shipway AN, Willner I (2003) Biochemical fuel cells. Handbook of fuel cells—fundamentals, technology and applications, vol 1. Wiley, New York, pp 355–381

    Google Scholar 

  5. Katz E, Atanassov P (2010) Biofuel cells. Electroanalysis 22:723–724

    Article  Google Scholar 

  6. Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045

    Article  Google Scholar 

  7. Davis F, Higson SPJ (2007) Biofuel cells–recent advances and applications. Biosens Bioelectron 22:1224–1235

    Article  Google Scholar 

  8. Heinzel A, Barragan VM (1999) A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sour 84:70–74

    Article  Google Scholar 

  9. Yamamoto O (2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 45:2423–2435

    Article  Google Scholar 

  10. Piccolino M (1997) Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology. Trends Neurosci 20:443–448

    Article  Google Scholar 

  11. Wang X, Sjöberg-Eerola P, Eriksson JE, Bobacka J, Bergelin M (2010) The effect of counter ions and substrate material on the growth and morphology of poly (3,4-ethylenedioxythiophene) films: towards the application of enzyme electrode construction in biofuel cells. Synth Met 160:1373–1381

    Article  Google Scholar 

  12. Zhao TS (2009) Micro fuel cells: principles and applications. Academic Press, Burlington

    Google Scholar 

  13. Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899–919

    Article  Google Scholar 

  14. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  Google Scholar 

  15. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trend Biotechnol 23:291–298

    Article  Google Scholar 

  16. Atanassov P, Apblett C, Banta S, Brozik S, Barton SC, Cooney M, Liaw BY, Mukerjee S, Minteer SD (2007) Enzymatic biofuel cells. Electrochem Soc Interface 16:28–31

    Google Scholar 

  17. Hao YuE, Scott K (2010) Enzymatic biofuel cells—fabrication of enzyme electrodes. Energies 3:23–42

    Article  Google Scholar 

  18. Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337

    Article  Google Scholar 

  19. Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr Opin Biotechnol 18:228–234

    Article  Google Scholar 

  20. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc B 84:260–276

    Article  Google Scholar 

  21. Zebda A, Renaud L, Cretin M, Innocent C, Ferrigno R, Tingry S (2010) Membraneless microchannel glucose biofuel cell with improved electrical performances. Sens Actuators B: Chem 149:44–50

    Article  Google Scholar 

  22. Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886

    Article  Google Scholar 

  23. Karyakin AA, Morozov SV, Karyakina EE, Varfolomeyev SD, Zorin NA, Cosnier S (2002) Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase. Electrochem Commun 4:417–420

    Article  Google Scholar 

  24. Arechederra RL, Treu BL, Minteer SD (2007) Development of glycerol/O2 biofuel cell. J Power Sour 173:156–161

    Article  Google Scholar 

  25. Yahiro AT, Lee SM, Kimble DO (1964) Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies. Biochimica et Biophysica Acta (BBA): Specialized Sect Biophys Subj 88:375–383

    Google Scholar 

  26. Nien PC, Wang JY, Chen PY, Chen LC, Ho KC (2010) Encapsulating benzoquinone and glucose oxidase with a PEDOT film: Application to oxygen-independent glucose sensors and glucose/O2 biofuel cells. Bioresour Technol 101:5480–5486

    Article  Google Scholar 

  27. Courjean O, Gao F, Mano N (2009) Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chem Int Ed 48:5897–5899

    Article  Google Scholar 

  28. Gao F, Yan Y, Su L, Wang L, Mao L (2007) An enzymatic glucose/O2 biofuel cell: preparation, characterization and performance in serum. Electrochem Commun 9:989–996

    Article  Google Scholar 

  29. Yan Y, Zheng W, Su L, Mao L (2006) Carbon-nanotube-based glucose/O2 biofuel cells. Adv Mater 18:2639–2643

    Article  Google Scholar 

  30. Atanassov P, Colon F, Rajendran V (2004) Glucose–air enzymatic fuel cell. American Chemical Society, Washington, DC, p 207

    Google Scholar 

  31. Cai C, Chen J (2004) Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem 332:75–83

    Article  Google Scholar 

  32. Tsujimura S, Kano K, Ikeda T (2002) Glucose/O2 biofuel cell operating at physiological conditions. Denki Kagaku oyobi Kogyo Butsuri Kagaku 70:940–942

    Google Scholar 

  33. Pizzariello A, Stred’ansky M, Miertu S (2002) A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix. Bioelectrochemistry 56:99–105

    Article  Google Scholar 

  34. Katz E, Willner I, Kotlyar AB (1999) A non-compartmentalized glucose O2 biofuel cell by bioengineered electrode surfaces. J Electroanal Chem 479:64–68

    Article  Google Scholar 

  35. Willner I, Katz E, Patolsky F, Bückmann AF (1998) Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. J Chem Soc, Perkin Transac 2(1998):1817–1822

    Article  Google Scholar 

  36. Willner I, Heleg-Shabtai V, Blonder R, Katz E, Tao G, Bückmann AF, Heller A (1996) Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. J Am Chem Soc 118:10321–10322

    Article  Google Scholar 

  37. Bachas LG, Law SA, Gavalas V, Ball JC, Andrews R (2002) Development of amperometric biosensors by integrating enzymes with carbon nanotube sol-gel composites. Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States

    Google Scholar 

  38. Gregg BA, Heller A (1990) Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Anal Chem 62:258–263

    Article  Google Scholar 

  39. Ticianelli EA, Derouin CR, Redondo A, Srinivasan S (1988) Methods to advance technology of proton exchange membrane fuel cells. J Electrochem Soc 135:2209

    Article  Google Scholar 

  40. Wang ZH, Wang CY, Chen KS (2001) Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J Power Sour 94:40–50

    Article  Google Scholar 

  41. Topcagic S, Minteer SD (2006) Development of a membraneless ethanol/oxygen biofuel cell. Electrochim Acta 51:2168–2172

    Article  Google Scholar 

  42. Liu C, Alwarappan S, Chen Z, Kong X, Li CZ (2010) Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron 25:1829–1833

    Article  Google Scholar 

  43. Akers NL, Moore CM, Minteer SD (2005) Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes. Electrochim Acta 50:2521–2525

    Article  Google Scholar 

  44. Barrière F, Ferry Y, Rochefort D, Leech D (2004) Targeting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell. Electrochem Commun 6:237–241

    Article  Google Scholar 

  45. Chen T, Barton SC, Binyamin G, Gao Z, Zhang Y, Kim HH, Heller A (2001) A miniature biofuel cell. J Am Chem Soc 123:8630–8631

    Article  Google Scholar 

  46. Coman V, Vaz-Domínguez C, Ludwig R, Harreither W, Haltrich D, Lacey ALD, Ruzgas T, Gorton L, Shleev S (2008) A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell. Phys Chem Chem Phys 10:6093–6096

    Article  Google Scholar 

  47. Kim HH, Mano N, Zhang Y, Heller A (2003) A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J Electrochem Soc 150:A209

    Article  Google Scholar 

  48. Yue PL, Lowther K (1986) Enzymatic oxidation of C1 compounds in a biochemical fuel cell. Chem Eng J 33:B69–B77

    Article  Google Scholar 

  49. Abad JM, Vélez M, Santamaría C, Guisán JM, Matheus PR, Vázquez L, Gazaryan I, Gorton L, Gibson T, Fernández VM (2002) Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic acid monolayers. J Am Chem Soc 124:12845–12853

    Article  Google Scholar 

  50. Inamuddin KM, Kim SI, So I, Kim SJ (2008) A conducting polymer/ferritin anode for biofuel cell applications. Electrochim Acta 54:3979–3983

    Article  Google Scholar 

  51. Kim J, Grate JW (2003) Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett 3:1219–1222

    Article  Google Scholar 

  52. Scodeller P, Carballo R, Szamocki R, Levin L, Forchiassin F, Calvo EJ (2010) Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide. J Am Chem Soc 132:11132–11140

    Article  Google Scholar 

  53. Raitman OA, Katz E, Bückmann AF, Willner I (2002) Integration of polyaniline/poly (acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. J Am Chem Soc 124:6487–6496

    Article  Google Scholar 

  54. Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78:409–418

    Article  Google Scholar 

  55. He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015

    Article  Google Scholar 

  56. Sharma V, Kundu PP (2010) Biocatalysts in microbial fuel cells. Enzym Microb Technol 47(5):179–188

    Article  Google Scholar 

  57. Oh S, Min B, Logan BE (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 38:4900–4904

    Article  Google Scholar 

  58. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    Article  Google Scholar 

  59. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  Google Scholar 

  60. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  Google Scholar 

  61. You S, Zhao Q, Zhang J, Liu H, Jiang J, Zhao S (2008) Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells. Biosens Bioelectron 23:1157–1160

    Article  Google Scholar 

  62. Li F, Sharma Y, Lei Y, Li B, Zhou Q (2010) Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation. Appl Biochem Biotechnol 160:168–181

    Article  Google Scholar 

  63. Wook Lee J, Kjeang E (2010) A perspective on microfluidic biofuel cells. Biomicrofluidics 4:041301

    Article  Google Scholar 

  64. Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185:3–27

    Article  Google Scholar 

  65. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  Google Scholar 

  66. Kim J, Jia H, Wang P (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296–308

    Article  Google Scholar 

  67. Brett CMA, Brett AMO, Brett A (1993) Electrochemistry: principles, methods, and applications. Oxford University Press, Oxford

    Google Scholar 

  68. Kharkats YI, Sokirko AV, Bark FH (1995) Properties of polarization curves for electrochemical cells described by Butler-Volmer kinetics and arbitrary values of the transfer coefficient. Electrochim Acta 40:247–252

    Article  Google Scholar 

  69. Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    Article  Google Scholar 

  70. Crespilho FN, Ghica ME, Zucolotto V, Nart FC, Oliveira ON Jr, Brett C (2007) Electroactive nanostructured membranes (ENM): synthesis and electrochemical properties of redox mediator modified gold nanoparticles using a dendrimer layer by layer approach. Electroanalysis 19:805–812

    Article  Google Scholar 

  71. Qiu JD, Zhou WM, Guo J, Wang R, Liang RP (2009) Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal Biochem 385:264–269

    Article  Google Scholar 

  72. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  Google Scholar 

  73. Huczko A (2000) Template-based synthesis of nanomaterials. Appl Phys A Mater Sci Process 70:365–376

    Article  Google Scholar 

  74. Park MS, Kang YM, Wang GX, Dou SX, Liu HK (2008) The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv Funct Mater 18:455–461

    Article  Google Scholar 

  75. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  76. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787

    Article  Google Scholar 

  77. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  Google Scholar 

  78. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  Google Scholar 

  79. Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130:1232–1239

    Article  Google Scholar 

  80. Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube modified electrodes. Angew Chem Int Ed 45:2533–2537

    Article  Google Scholar 

  81. Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge plane sites and tube ends are the reactive sites. Chem Commun 7:829–841

    Article  Google Scholar 

  82. Streeter I, Wildgoose GG, Shao L, Compton RG (2008) Cyclic voltammetry on electrode surfaces covered with porous layers: an analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes. Sens Actuators B: Chem 133:462–466

    Article  Google Scholar 

  83. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152:187–214

    Article  Google Scholar 

  84. Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121–125

    Article  Google Scholar 

  85. Zhang WD, Zhao YD, Chen H, Luo QM (2002) Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode. Anal Sci 18:939–941

    Article  Google Scholar 

  86. Gao F, Viry L, Maugey M, Poulin P, Mano N (2010) Engineering hybrid nanotube wires for high-power biofuel cells. Nature Commun 1:1–7

    Google Scholar 

  87. Zheng W, Li Q, Su L, Yan Y, Zhang J, Mao L (2006) Direct electrochemistry of multi copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives. Electroanalysis 18:587–594

    Article  Google Scholar 

  88. Guiseppi-Elie A, Lei C, Baughman RH (2002) Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13:559

    Article  Google Scholar 

  89. Xue H, Sun W, He B, Shen Z (2003) Single-wall carbon nanotubes as immobilization material for glucose biosensor. Synth Met 135:831–832

    Article  Google Scholar 

  90. Horiuchi S, Gotou T, Fujiwara M, Asaka T, Yokosawa T, Matsui Y (2004) Single graphene sheet detected in a carbon nanofilm. Appl Phys Lett 84:2403

    Article  Google Scholar 

  91. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  92. Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Direct evidence for atomic defects in graphene layers. Nature 430:870–873

    Article  Google Scholar 

  93. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  Google Scholar 

  94. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  95. Pumera M, Ambrosi A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954–965

    Article  Google Scholar 

  96. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905

    Article  Google Scholar 

  97. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    Article  Google Scholar 

  98. Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80:403–406

    Article  Google Scholar 

  99. Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC (2009) Intrinsic response of graphene vapor sensors. Nano Lett 9:1472–1475

    Article  Google Scholar 

  100. Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:301–306

    Article  Google Scholar 

  101. Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346

    Article  Google Scholar 

  102. Colmati F, Yoshioka SA, Silva V, Varela H, Gonzalez ER (2007) Enzymatic based biocathode in a polymer electrolyte membrane fuel cell. Int J Electrochem Sci 2:195–202

    Google Scholar 

  103. Ramanavicius A, Kausaite A, Ramanaviciene A (2008) Enzymatic biofuel cell based on anode and cathode powered by ethanol. Biosens Bioelectron 24:761–766

    Article  Google Scholar 

  104. Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18:1027–1032

    Article  Google Scholar 

  105. Bunte C, Prucker O, Konig T, Ruhe J (2009) Enzyme containing redox polymer networks for biosensors or biofuel cells: a photochemical approach. Langmuir 26:6019–6027

    Article  Google Scholar 

  106. Taqieddin E, Amiji M (2004) Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials 25:1937–1945

    Article  Google Scholar 

  107. Rege K, Raravikar NR, Kim DY, Schadler LS, Ajayan PM, Dordick JS (2003) Enzyme- polymer- single walled carbon nanotube composites as biocatalytic films. Nano Lett 3:829–832

    Article  Google Scholar 

  108. Wang P, Sheng Dai SD, Tsao AY, Davison BH (2001) Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis. Biotechnol Bioeng 74:249–255

    Article  Google Scholar 

  109. de la Garza L, Jeong G, Liddell PA, Sotomura T, Moore TA, Moore AL, Gust D (2003) Enzyme-based photoelectrochemical biofuel cell. J Phys Chem B 107:10252–10260

    Article  Google Scholar 

  110. Daniel DK, Das Mankidy B, Ambarish K, Manogari R (2009) Construction and operation of a microbial fuel cell for electricity generation from wastewater. Int J Hydrogen Energy 34:7555–7560

    Article  Google Scholar 

  111. Alferov SV, Tomashevskaya LG, Ponamoreva ON, Bogdanovskaya VA, Reshetilov AN (2006) Biofuel cell anode based on the Gluconobacter oxydans bacteria cells and 2, 6-dichlorophenolindophenol as an electron transport mediator. Russ J Electrochem 42:403–404

    Article  Google Scholar 

  112. Miyake T, Oike M, Yoshino S, Yatagawa Y, Haneda K, Kaji H, Nishizawa M (2009) Biofuel cell anode: NAD +/glucose dehydrogenase-coimmobilized ketjenblack electrode. Chem Phys Lett 480:123–126

    Article  Google Scholar 

  113. Ivanov I, Vidakovi -Koch T, Sundmacher K (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3:803–846

    Article  Google Scholar 

  114. Bullock C (1995) Immobilised enzymes. Sci Prog 78:119–134

    Google Scholar 

  115. Kennedy JF, Melo EHM, Jumel K (1990) Immobilized enzymes and cells. Chem Eng Prog 86:81–89

    Google Scholar 

  116. Tischer W, Kasche V (1999) Immobilized enzymes: crystals or carriers? Trend Biotechnol 17:326–335

    Article  Google Scholar 

  117. Tischer W, Wedekind F (2000) Biocatalysis: from discovery to application. Springer-Verlag, Berlin, p 254

    Google Scholar 

  118. Okawa Y, Nagano M, Hirota S, Kobayashi H, Ohno T, Watanabe M (1999) Tethered mediator biosensor. Mediated electron transfer between redox enzyme and electrode via ferrocene anchored to electrode surface with long poly (oxyethylene) chain. Biosens Bioelectron 14:229–235

    Article  Google Scholar 

  119. Smolander M, Livio HL, Räsänen L (1992) Mediated amperometric determination of xylose and glucose with an immobilized aldose dehydrogenase electrode. Biosens Bioelectron 7:637–643

    Article  Google Scholar 

  120. Wang J, Mo JW, Li S, Porter J (2001) Comparison of oxygen-rich and mediator-based glucose-oxidase carbon-paste electrodes. Anal Chim Acta 441:183–189

    Article  Google Scholar 

  121. Picioreanu C, Katuri KP, van Loosdrecht MCM, Head IM, Scott K (2010) Modelling microbial fuel cells with suspended cells and added electron transfer mediator. J Appl Electrochem 40:151–162

    Article  Google Scholar 

  122. Hodak J, Etchenique R, Calvo EJ, Singhal K, Bartlett PN (1997) Layer-by-layer self-assembly of glucose oxidase with a poly (allylamine) ferrocene redox mediator. Langmuir 13:2708–2716

    Article  Google Scholar 

  123. Karyakin AA, Gitelmacher OV, Karyakina EE (1995) Prussian blue-based first-generation biosensor. A sensitive amperometric electrode for glucose. Anal Chem 67:2419–2423

    Article  Google Scholar 

  124. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389–407

    Article  Google Scholar 

  125. Nakano K, Nakamura K, Iwamoto K, Soh N, Imato T (2009) Positive-feedback-mode scanning electrochemical microscopy imaging of redox-active DNA-poly (1, 4-benzoquinone) conjugate film deposited on carbon fiber electrode for micrometer-sized hybridization biosensor applications. J Electroanal Chem 628:113–118

    Article  Google Scholar 

  126. Kealy TJ, Pauson PL (1951) A new type of organo-iron compound. Nature 168:1039–1040

    Article  Google Scholar 

  127. Merchant SA, Tran TO, Meredith MT, Cline TC, Glatzhofer DT, Schmidtke DW (2009) High-sensitivity amperometric biosensors based on ferrocene-modified linear poly (ethylenimine). Langmuir 25:7736–7742

    Article  Google Scholar 

  128. Ishige Y, Takeda S, Kamahori M (2010) Direct detection of enzyme-catalyzed products by FET sensor with ferrocene-modified electrode. Biosens Bioelectron 26(4):1366–1372

    Article  Google Scholar 

  129. Kato R, Sato A, Yoshino D, Hattori T (2011) Electrochemical sensing of anions and heparin by an alkyl-chain ferrocene cationic surfactant. Anal Sci 27:61–66

    Article  Google Scholar 

  130. Kwon SJ, Yang H, Jo K, Kwak J (2008) An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes. Analyst 133:1599–1604

    Article  Google Scholar 

  131. Qiu JD, Liang RP, Wang R, Fan LX, Chen YW, Xia XH (2009) A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix. Biosens Bioelectron 25:852–857

    Article  Google Scholar 

  132. De Cuyper M, Joniau M (1992) Binding characteristics and thermal behaviour of cytochrome-C oxidase, inserted into phospholipid-coated, magnetic nanoparticles. Biotechnol Appl Biochem 16:201

    Google Scholar 

  133. Mukhopadhyay K, Phadtare S, Vinod VP, Kumar A, Rao M, Chaudhari RV, Sastry M (2003) Gold nanoparticles assembled on amine-functionalized Na-Y zeolite: a biocompatible surface for enzyme immobilization. Langmuir 19:3858–3863

    Article  Google Scholar 

  134. Zhang S, Wang N, Yu H, Niu Y, Sun C (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67:15–22

    Article  Google Scholar 

  135. Crespilho FN, Ghica ME, Gouveia-Caridade C, Oliveira ON Jr, Brett C (2008) Enzyme immobilisation on electroactive nanostructured membranes (ENM): optimised architectures for biosensing. Talanta 76:922–928

    Article  Google Scholar 

  136. Siqueira JR Jr, Crespilho FN, Zucolotto V, Oliveira ON Jr (2007) Bifunctional electroactive nanostructured membranes. Electrochem Commun 9:2676–2680

    Article  Google Scholar 

  137. Katz E, Filanovsky B, Willner I (1999) A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. New J Chem 23:481–487

    Article  Google Scholar 

  138. Lewis K (1966) Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells. Microbiol Mol Biol Rev 30:101

    Google Scholar 

  139. Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292

    Article  Google Scholar 

  140. Ishikawa M, Yamamura S, Takamura Y, Sode K, Tamiya E, Tomiyama M (2006) Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system. Int J Hydrogen Energy 31:1484–1489

    Article  Google Scholar 

  141. Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    Article  Google Scholar 

  142. Schröder U, Nießen J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem 115:2986–2989

    Article  Google Scholar 

  143. Fishilevich S, Amir L, Fridman Y, Aharoni A, Alfonta L (2009) Surface display of redox enzymes in microbial fuel cells. J Am Chem Soc 131:12052–12053

    Article  Google Scholar 

  144. Martins MVA, Bonfin C, da Silva WC, Crespilho FN, (2010) Iron (III) nanocomposites for enzyme-less biomimetic cathode: A promising material for use in biofuel cells. Electrochem Commun 12:1509–1512

    Article  Google Scholar 

  145. Sokic-Lazic D, Minteer SD (2008) Citric acid cycle biomimic on a carbon electrode. Biosens Bioelectron 24:939–944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank N. Crespilho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olyveira, G.M., Iost, R.M., Luz, R.A.S., Crespilho, F.N. (2013). Biofuel Cells: Bioelectrochemistry Applied to the Generation of Green Electricity. In: de Souza, F., Leite, E. (eds) Nanoenergy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31736-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31736-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31735-4

  • Online ISBN: 978-3-642-31736-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics