Skip to main content

Facile Routes to Produce Hematite Film for Hydrogen Generation from Photoelectro-Chemical Water Splitting

  • Chapter
  • First Online:
Nanoenergy

Abstract

In this chapter, we brief review a recent progress in chemical synthesis used to prepare very promise material to be applied as photoanode in a PEC cell. We discuss the important parameters such as; the interface solid/liquid showing the different challenge that needs to be addressed for obtains higher semiconductor photoanode performance. In addition, we discuss the impact of a variety of morphology applied in a PEC cell to split water and generate hydrogen and oxygen molecular. Finally, we have pointed out the progress of molecular oxygen evolution mechanism from water oxidation under solar light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37

    Article  Google Scholar 

  2. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28

    Article  Google Scholar 

  3. Matsuoka M, Kitano M, Takeuchi M, Tsujimaru K, Anpo M, Thomas JM (2007) Photocatalysis for new energy production. Catal Today 122:51–61

    Article  Google Scholar 

  4. Mor KG, Prakasam HE, Varghese OK, Shankar K, Grimes CA (2007) Vertically oriented Ti-Fe-O nanotube array films: towards a useful material architecture for solar spectrum water photolysis. Nano Lett 7(8):2356–2364

    Article  Google Scholar 

  5. Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD, Glasscock JA (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 31:1999–2017

    Article  Google Scholar 

  6. Duret A, Gratzel M (2005) Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J Phys Chem B 109:17184–17191

    Article  Google Scholar 

  7. Cesar I, Kay A, Gonzalez Martinez JA, Gratzel M (2006) Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of si-doping. J Am Chem Soc 128(14):4582–4583

    Article  Google Scholar 

  8. Kay A, Cesar I, Gratzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128(49):15714–15721

    Article  Google Scholar 

  9. Glasscock JA, Barnes PRF, Plumb IC, Savvides N (2007) Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J Phys Chem C 111:16477–16488

    Article  Google Scholar 

  10. Dare-Edwards MP, Goodnough JP, Hamnett A, Trevellick PR (1983) Electrochemistry and photoelectrochemistry of iron(III) oxide. J Chem Soc, Faraday Trans 79:2027–2041

    Article  Google Scholar 

  11. Kennedy JH, Frese KW Jr (1978) Photooxidation of water at α-Fe2O3 electrodes. J Electrochem Soc 125(5):709–714

    Google Scholar 

  12. van de Krol R, Liang Y, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18:2311–2320

    Article  Google Scholar 

  13. Tilley SD, Cornuz M, Sivula K, Gratzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem Int Ed 49:6405–6408

    Article  Google Scholar 

  14. Hu YS, Kleiman-Shwarsctein A, Forman AJ, Hazen D, Park J-N, McFarland EW (2008) Pt-doped alpha- Fe2O3 thin films active for photoelectrochemical water splitting. Chem Mater 20:3803–3805

    Article  Google Scholar 

  15. Sartoretti CJ, Alexander BD, Solarska R, Rutkowska IA, Augustynski J (2005) Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J Phys Chem B 109:13685–13692

    Article  Google Scholar 

  16. Zhong DK, Sun J, Inumaru H, Gamelin DR (2009) Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J Am Chem Soc 131:6086–6087

    Article  Google Scholar 

  17. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Article  Google Scholar 

  18. Steinmiller EMP, Choi K-S (2009) Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. PNAS 106(49):20633–20636

    Article  Google Scholar 

  19. Shiroishi H, Nukaga M, Yamashita S, Kaneko M (2002) Efficient photochemical water oxidation by a molecular catalyst immobilized onto metal oxides. Chem Lett 31:488–489

    Article  Google Scholar 

  20. Bjorkstbn U, Moser J, Gratzel M (1994) Photoelectrochemical studies on nanocrystalline hematite films. Chem Mater 6:858–863

    Article  Google Scholar 

  21. Ahrned SM, Leduc J, Haller SF (1988) Photoelectrochemical and impedance characteristics of specular hematite. 1. photoelectrochemical parallel conductance, and trap rate studies. J Phys Chem B 92:6655–6660

    Article  Google Scholar 

  22. Bouquet V, Bernardi MIB, Zanetti SM, Leite ER, Longo E, Varela JA, Viry MG, Perrin A (2000) Epitaxially grown LiNbO3 thin films by polymeric precursor method. J Mater Res 15:2446–2453

    Article  Google Scholar 

  23. Pontes FM, Leite ER, Mambrini GP, Escote MT, Longo E, Varela JÁ (2004) Very large dielectric constant of highly oriented Pb1-xBaxTiO3 thin films prepared by chemical deposition. Appl Phys Lett 84(2):248–250

    Article  Google Scholar 

  24. Mambrini GP, Leite ER, Escote MT, Chiquito AJ, Longo E, Varela JA, Jardim RF (2007) Structural, microstructural, and transport properties of highly oriented LaNiO3 thin films deposited on SrTiO3 (100) single crystal. J Appl Phys 102:043708

    Article  Google Scholar 

  25. Souza FL, Lopes KP, Longo E, Leite ER (2009) The influence of the film thickness of nanostructured alpha-Fe(2)O(3) on water photooxidation. Phys Chem Chem Phys 11:1215–1219

    Article  Google Scholar 

  26. Souza FL, Lopes KP, Longo E, Leite ER (2009) Nanostructured hematite thin film produced by spin-coating deposition solution: application in water splitting. Sol Energ Mat Sol Cells 93:362–368

    Article  Google Scholar 

  27. Sivula K, Zboril R, Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Gratzel M (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132:7436–7444

    Article  Google Scholar 

  28. Gonçalves RH, Lima BHR, Leite ER (2011) Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J Am Chem Soc 133:6012–6019

    Article  Google Scholar 

  29. Trasatti S (1980) Electrocatalysis by oxides—Attempt at a unifying approach. J Electroanal Chem 111:125–131

    Article  Google Scholar 

  30. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  Google Scholar 

  31. Yanina SV, Rosso KM (2008) Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 320:218–222

    Article  Google Scholar 

  32. Kronawitter CX, Vayssieres L, Shen S, Guo L, Wheeler DA, Zhang JZ, Antoun BR, Mao SS (2011) A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy Environ Sci 4:4889

    Article  Google Scholar 

  33. Morrish R, Rahman M, Don MacElroy JM, Wolden CA (2011) Activation of hematite nanorod arrays for photoelectrochemical water splitting. Chem Sus Chem 4:474–479

    Google Scholar 

  34. Ling Y, Wang G, Reddy J, Wang C, Zhang JZ, Li Y (2012) The influence of oxygen content on the thermal activation of hematite nanowires. Angew Chem 51:1–7

    Article  Google Scholar 

  35. Carvalho VAN, Luz RAS, Lima BH, Crespilho FN, Leite ER, Souza FL (2012) Highly oriented hematite nanorods arrays for photoelectrochemical water splitting. J Power Sources 205:525–529

    Article  Google Scholar 

  36. Vayssieres L, Beermann N, Lindquist SE, Hagfeldt A (2001) Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron (III) oxides. Chem Mater 13(2):233–235

    Article  Google Scholar 

  37. Beermann N, Vayssieres L, Lindquist SE, Hagfeldt A (2000) Photoelectrochemical studies of oriented nanorod thin films of hematite. J Electrochem Soc 147(7):2456–2461

    Article  Google Scholar 

  38. Lindgren T, Wang H, Beermann N, Vayssieres L, Lindquist SE, Hagfeldt A (2002) Aqueous photoelectrochemistry of hematite nanorod-array Sol. Energy Mat Solar Cells 71(12):231–243

    Article  Google Scholar 

  39. Cornuz M, Graetzel M, Sivula K (2010) Preferential orientation in hematite films for solar hydrogen production via water splitting. Chem Vap Deposition 16:291–295

    Article  Google Scholar 

  40. Cherepy NJ, Liston DB, Lovejoy JA, Deng HM, Zhang JZ (1998) Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles. J Phys Chem B 102(5):770–776

    Article  Google Scholar 

  41. Sivula K, Formal FL, Gratzel M (2009) WO3—Fe2O3 photoanodes for water splitting: a host scaffold guest absorber approach. Chem Mater 21(13):2862–2867

    Article  Google Scholar 

  42. Cesar IK, Sivula K, Kay A, Zboril R, Gratzel M (2008) Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. The J Phys Chem C 113(2):772–782

    Google Scholar 

  43. Kharisov BI, Kharissova OV, Yacaman MJ (2010) Nanostructures with animal-like shapes. Ind Eng Chem Res 49(18):8289–8309

    Article  Google Scholar 

  44. Sun J, Zhong DK, Gamelin DR (2010) Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ Sci 3(9):1252–1261

    Article  Google Scholar 

  45. Andrade L, Cruz R, Ribeiro HA, Mendes A (2010) Impedance characterization of dye-sensitized solar cells in a tandem arrangement for hydrogen production by water splitting. Int J Hydrogen Energy 35(17):8876–8883

    Article  Google Scholar 

  46. Frydrych J, Machala L, Hermanek M, Medrik I, Mashlan M, Tucek J, Pechousek J et al (2010) A nanocrystalline hematite film prepared from iron (III) chloride precursor. Thin Solid Films 518(21):5916–5991

    Article  Google Scholar 

  47. Hahn NT, Ye H, Flaherty DW, Bard AJ, Mullins CB (2010) Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACSNANO 4(4):1977–1986

    Google Scholar 

  48. Li Y, Zhang JZ (2009) Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev 4(4):517–528

    Article  Google Scholar 

  49. Tahir AA, Upul Wijayantha KG, Yarahmadi SS, Mazhar M, McKee V (2009) Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chem Mater 21(16):3763–3772

    Google Scholar 

  50. Formal FL, Tétreault N, Cornuz M, Moehl T, Gratzel M, Sivula K (2011) Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci 2(4):737–743

    Article  Google Scholar 

  51. Klahr BM, Hamann TW (2011) Current and voltage limiting processes in thin film hematite electrodes. The J Phys Chem C 115(16):8393–8399

    Article  Google Scholar 

  52. McDonald KJ, Choi KS (2011) Photodeposition of Co-based oxygen evolution catalysts on α-Fe2O3 photoanodes. Chem Mater 23(7):1686–1693

    Article  Google Scholar 

  53. Spray RL, McDonald KJ, Choi KS (2011) Enhancing photoresponse of nanoparticulate α-Fe2O3 electrodes by surface composition tuning. The J Phys Chem C 115(8):3497–3506

    Article  Google Scholar 

  54. Lin Y, Zhou S, Sheehan SW, Wang D (2011) Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc 133(8):2398–2401

    Article  Google Scholar 

  55. Sivula K, Formal FL, Gratzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chem Sus Chem 4(4):432–449

    Google Scholar 

  56. Pendlebury SR, Barroso M, Cowan AJ, Sivula K, Tang J, Gratzel M et al (2011) Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem Commun 47(2):716–718

    Article  Google Scholar 

  57. Wijayantha KGU, Yarahmadi SS, Peter LM (2011) Kinetics of oxygen evolution α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys Chem Chem Phys 13(12):5264–5270

    Article  Google Scholar 

  58. Zhong DK, Cornuz M, Sivula K, Grätzel M, Gamelin DR (2011) Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci 4(5):1759–1764

    Article  Google Scholar 

  59. Dotan H, Sivula K, Gratzel M, Rothschild A, Warren SC (2011) Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenge. Energy Environ Sci 4(3):958–964

    Article  Google Scholar 

  60. Chen J, Xu L, Li W, Gou X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586

    Article  Google Scholar 

  61. Itoh K, Bockris JO (1984) Thin film photoelectrochemistry: iron oxide. J Electrochem Soc 131(6):1266–1271

    Article  Google Scholar 

  62. Alencar WS, Crespilho FN, Zucolotto V, Oliveira ON Jr, Silva WC (2007) Influence of film architecture on the charge-transfer reactions of metallophthalocyanine layer-by-layer films. The J Phys Chem C 111(34):12817–12821

    Article  Google Scholar 

  63. Crespilho FN, Ghica ME, Caridade CG, Oliveira ON Jr, Brett C (2008) Enzyme immobilisation on electroactive nanostructured membranes (ENM): optimised architectures for biosensing. Talanta 76(4):922–928

    Article  Google Scholar 

  64. Brett CMA, Brett AMO (1993) Electrochemistry Principles, Methods and Applications. Oxford University Press, New York

    Google Scholar 

  65. Moser J, Gratzel M (1982) Photoelectrochemistry with colloidal semiconductors; laser studies of halide oxidation in colloidal dispersions of TiO2 and α- Fe2O3. Helv Chim Acta 65(5):1436–1444

    Article  Google Scholar 

  66. Gardner RFG, Sweett F, Tanner DW (1963) The electrical propertie of alpha ferric oxide—II. Ferric oxide of high purity. J Phys Chem Solids 24:1183–1196

    Article  Google Scholar 

  67. Drissi SH, Abdelmoula RM, Génin JMR (1995) The preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxide-carbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media. Corros Sci 37(12):2025–2041

    Article  Google Scholar 

  68. Berverskog B, Puigdomenech I (1996) Revised pourbaix diagrams for iron at 25–300 °C. Corros Sci 38(12):2121–2135

    Article  Google Scholar 

  69. Kavan L, Kratochvilova K, Gratzel M (1995) Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J Electroanal Chem 394(12):93–102

    Google Scholar 

  70. Boschloo G, Fitzmaurice D (1999) Spectroelectrochemical investigation of surface states in nanostructured TiO2 electrodes. J Phys Chem B 103(12):2228–2231

    Article  Google Scholar 

  71. Wang H, Boschloo JHG, Lindstrom H, Hagfeldt A, Lindquist SE (2001) Electrochemical investigation of traps in a nanostructured TiO2 film. J Phys Chem B 105(13):2529–2533

    Article  Google Scholar 

  72. Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Bisquert J (2003) Cyclic voltammetry studies of nanoporous semiconductors. Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. J Phys Chem B 107(3):758–768

    Article  Google Scholar 

  73. Bisquert J (2003) Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys Chem Chem Phys 5(24):5360–5364

    Article  Google Scholar 

  74. Randriamahazaka H, Fabregat-Santiago F, Zaban A, García-Cañadas J, Garcia-Belmonte G, Bisquert J (2006) Chemical capacitance of nanoporous-nanocrystalline TiO2 in a room temperature ionic liquid. Phys Chem Chem Phys 8(15):1827–1833

    Google Scholar 

  75. Tirosh S, Dittrich T, Ofir A, Grinis L, Zaban A (2006) Influence of ordering in porous TiO2 layers on electron diffusion. J Phys Chem B 110(33):16165–16168

    Article  Google Scholar 

  76. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90(14):2011–2075

    Article  Google Scholar 

  77. Law M, Greene LE, Radenovic A, Kuykendall T, Liphardt J, Yang P (2006) ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J Phys Chem B 110(45):22652–22663

    Article  Google Scholar 

  78. Mora-Seró I, Fabregat-Santiago F, Denier B, Bisquert J, Tena-Zaera R, Elias J et al (2006) Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl Phys Lett 89(20):203117–203119

    Article  Google Scholar 

  79. Bisquert J (2008) Physical electrochemistry of nanostructured devices. Phys Chem Chem Phys 10(1):49–72

    Article  Google Scholar 

  80. Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Barea EM, Palomares E (2008) A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg Chim Acta 361(3):684–698

    Article  Google Scholar 

  81. Bisquert J (2011) A variable series resistance mechanism to explain the negative capacitance observed in impedance spectroscopy measurements of nanostructured solar cells. Phys Chem Chem Phys 13(10):4679–4685

    Article  Google Scholar 

  82. Bisquert J, Zabn Z (2003) The trap-limited diffusivity of electrons in nanoporous semiconductor networks permeated with a conductive phase. Appl Phys A Mater Sci Process 77(3):507–514

    Article  Google Scholar 

  83. Leng WH, Zhang Z, Zhang ZQ, Cao CN (2005) Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J Phys Chem B 109(31):15008–15023

    Article  Google Scholar 

  84. Levine S, Smith AL (1971) Theory of the differential capacity of the oxide/aqueous electrolyte interface. Discuss Faraday Soc 52:290–301

    Article  Google Scholar 

  85. Healy TW, White LR (1978) Ionizable surface group models of aqueous interfaces. Adv Colloid Interface Sci 9(4):303–345

    Article  Google Scholar 

  86. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    Article  Google Scholar 

  87. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502

    Article  Google Scholar 

  88. Bockris JO, Huq A (1956) The mechanism of the electrolytic evolution of oxygen on platinum. Proc Royal Soc London A 237:277–296

    Article  Google Scholar 

  89. Zhong DK, Gamelin DR (2010) Photoelectrochemical water oxidation by cobalt catalyst (“Co-Pi”) α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132(12):4202–4207

    Article  Google Scholar 

  90. Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131(11):3838–3839

    Article  Google Scholar 

  91. Trasatti S (1994) In: Lipkowski J, Ross PN (eds) The electrochemistry of novel materials.VCH Publishers, New York

    Google Scholar 

  92. Wohlfahrt-Mehrens M, Heitbaum J (1987) Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J Electroanal Chem Interfacial Electrochem 237(2):251–260

    Article  Google Scholar 

  93. Willsau J, Wolter O, Heitbaum J (1985) Does the oxide layer take part in the oxygen evolution reaction on platinum? A DEMS study J Electroanal Chem 195(2):299–306

    Article  Google Scholar 

  94. Hibbert DB, Churchill CR (1984) Kinetics of the electrochemical evolution of isotopically enriched gases. Part 2-18O16O evolution on NiCO2O4 and LixCo3-xO4 in alkaline solution. J Chem Soc, Faraday Trans 1 Phys Chem Condens Phases 80(7):1965–1971

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Brazilian agencies of FAPESP (Grant No. 2010/02464-6), CAPES, CNPq (555855/2010-4), Instituto Nacional em Eletrônica Orgânica (INEO), NanoBioMed Brazilian Network (CAPES) and INCTMN.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flavio L. de Souza or Edson R. Leite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Souza, F.L., Xavier, A.M., de Carvalho, W.M., Gonçalves, R.H., Leite, E.R. (2013). Facile Routes to Produce Hematite Film for Hydrogen Generation from Photoelectro-Chemical Water Splitting. In: de Souza, F., Leite, E. (eds) Nanoenergy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31736-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31736-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31735-4

  • Online ISBN: 978-3-642-31736-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics